- 博客(8)
- 收藏
- 关注
原创 RuntimeError: CUDA error: no kernel image is available for execution on the device
cuda 12.0 需要使用torch1.7.1。1.7.0包括从https://download.pytorch.org/whl/torch_stable.html下载wheel本地安装死活都报错,一气之下跑去问gpt,然后居然就不报错了!!!!!!!!!!!!!!!!!
2023-11-20 22:19:49 100 1
原创 python -m spacy download en_core_web_sm报错
python -m spacy download en_core_web_sm报错requests.exceptions.ConnectionError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443)
2023-09-05 19:07:26 925 1
原创 Nested Named Entity Recognition with Span-level Graphs阅读笔记
作者构建两种跨度级别图,entity-entity graph and span-entity graph。如果处理每个实体提及或原始跨度作为多个相邻标记的跨度,这两个图都对跨度之间的关系进行建模。4、双仿射模型也被用于探索graph of original token sequence和the graph of tokens in recognized entities的关系。5、解决了嵌套NER超图结构的虚假结构和歧义问题。(Muis和Lu(2017);作者使用连接实体和原始跨度的跨度级图来解决问题。
2023-08-01 10:18:16 171
原创 An Embarrassingly Easy but Strong Baseline for Nested Named Entity Recognition
命名实体识别是对文本中的实体跨度进行检测和分类的任务。当实体跨度彼此重叠时,此问题被命名为嵌套NER。基于跨度的方法已被广泛用于解决嵌套NER问题。这些方法中的大多数都会得到一个分数为n×n的矩阵,其中n表示句子的长度,每个条目对应一个跨度。然而,先前的工作忽略了分数矩阵中的空间关系( spatial relations)。在本文中,我们建议使用卷积神经网络(CNN) 在分数矩阵中对这些空间关系进行建模。进一步的分析表明,使用CNN可以帮助模型找到更多的嵌套实体。
2023-07-01 18:41:20 324
原创 Query Graph Generation for Answering Multi-hop Complex Questions from Knowledge Bases
Simple QA:姚明出生在哪里?姚明_出生于_?--> 三元组知识库匹配。1)带约束的问题谁是第一届温网男单冠军?。该问题中的 “第一届” 表示一种对答案实体的约束。2)多跳问题成龙主演电影的导演是哪些人?<成龙,主演,新警察故事>, <新警察故事,导演,陈木胜>。使用多个三元组所形成的多跳推理路径才能够回答。本文同时解决约束和多跳问题。观察到先前将约束合并到查询图中可以有效地修剪搜索空间,作者提出了一种改进的分阶段查询图生成方法,该方法具有更灵活的生成查询图的方法。我们通过。
2023-06-16 19:56:49 330
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人