题目
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
解题思路
方法一:使用暴力法,第一次循环扫描买入的时机,第二次循环扫描卖出的时机。
时间复杂度:O(n),空间复杂度:O(1)
方法二:计算前i天的最小值,如果第i天不是最小值,那么假设第i天卖出,比较是否为最大值。
时间复杂度:O(n),空间复杂度:O(1)
方法三:动态规划,买卖股票的经典解法。定义一个dp数组,保存两种状态,分别是当前持有股票的最大现金和当前不持有股票的最大现金。
时间复杂度:O(n),空间复杂度:O(n)
代码
方法一:暴力法
class Solution {
// 解题思路:暴力法,使用双循环
// 时间复杂度O(n),空间复杂度O(1)
public int maxProfit(int[] prices) {
// 1. 记录最大利润
int maxprofit = 0;
// 2. 外层循环记录买入天数
for(int i = 0; i < prices.length - 1; i++){
for(int j = i + 1; j < prices.length; j++){
maxprofit = maxprofit < (prices[j] - prices[i]) ? (prices[j] - prices[i]):maxprofit;
}
}
return maxprofit;
}
}
方法二:最小值法
class Solution {
public int maxProfit(int[] prices){
// 1. 记录最大的利润
int maxprofit = 0;
int minprice = Integer.MAX_VALUE;
// 2. 计算每天卖出的最大利润
for(int i = 0; i < prices.length; i++){
if(minprice > prices[i]){
minprice = prices[i];
// 3. 如果当天的价格不是目前的最低值并且当天卖出的利润最大
}else if(prices[i] - minprice > maxprofit){
maxprofit = prices[i] - minprice;
}
}
return maxprofit;
}
}
方法三:动态规划
class Solution {
public int maxProfit(int[] prices){
// 动态规划,解决买卖股票一系列问题,经典的解法。
// 动规五部曲第一步,使用dp数组,一天有两个状态,持有这只股票得到的最大现金,不持久这只股票得到的最大现金。
// 时间复杂度O(n),空间复杂度O(n);
int length = prices.length;
int result = 0;
// 1. 定义dp数组
int[][] dp = new int[length][2];
// 2. 初始化
// dp[i][0]表示第i天持有这个股票,dp[i][1]表示第i天不持有这支股票。初始资金为0.
dp[0][0] = -prices[0];
dp[0][1] = 0;
// 3. 推导递推公式
for(int i = 1; i < length; i++){
// 4. 后一天的状态与前一天的有关
// 4.1 前一天持有今天还持有,前一天不持有今天持有,由于只能买一次,所以直接从0减去。找出最大值。
dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
// 4.2 前一天不持有今天还不持有,前一天持有今天不持有。找出最大值。
dp[i][1] = Math.max(dp[i - 1][1], (dp[i - 1][0] + prices[i]));
}
// 5.最后一天肯定是不持有
return dp[length - 1][1];
}
}