121、买卖股票最佳时机

题目

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。

解题思路

方法一:使用暴力法,第一次循环扫描买入的时机,第二次循环扫描卖出的时机。
时间复杂度:O(n),空间复杂度:O(1)
方法二:计算前i天的最小值,如果第i天不是最小值,那么假设第i天卖出,比较是否为最大值。
时间复杂度:O(n),空间复杂度:O(1)
方法三:动态规划,买卖股票的经典解法。定义一个dp数组,保存两种状态,分别是当前持有股票的最大现金和当前不持有股票的最大现金。
时间复杂度:O(n),空间复杂度:O(n)

代码

方法一:暴力法

class Solution {
    // 解题思路:暴力法,使用双循环
    // 时间复杂度O(n),空间复杂度O(1)
    public int maxProfit(int[] prices) {
        // 1.  记录最大利润
        int maxprofit = 0;
        // 2. 外层循环记录买入天数
        for(int i = 0; i < prices.length - 1; i++){
            for(int j = i + 1; j < prices.length; j++){
            maxprofit =  maxprofit < (prices[j] - prices[i]) ?  (prices[j] - prices[i]):maxprofit;
            }
        }
        return maxprofit;
    }
}

方法二:最小值法

class Solution {
    public int maxProfit(int[] prices){
        // 1. 记录最大的利润
        int maxprofit = 0;
        int minprice = Integer.MAX_VALUE;
        // 2. 计算每天卖出的最大利润
        for(int i = 0; i < prices.length; i++){
            if(minprice > prices[i]){
                minprice = prices[i];
                // 3. 如果当天的价格不是目前的最低值并且当天卖出的利润最大
            }else if(prices[i] - minprice > maxprofit){
                maxprofit = prices[i] - minprice;
            }
        }
        return maxprofit;
    }
}

方法三:动态规划

class Solution {
    public int maxProfit(int[] prices){
        // 动态规划,解决买卖股票一系列问题,经典的解法。
        // 动规五部曲第一步,使用dp数组,一天有两个状态,持有这只股票得到的最大现金,不持久这只股票得到的最大现金。
        // 时间复杂度O(n),空间复杂度O(n);
        int length = prices.length;
        int result = 0;
        // 1. 定义dp数组
        int[][] dp = new int[length][2];
        // 2. 初始化 
        // dp[i][0]表示第i天持有这个股票,dp[i][1]表示第i天不持有这支股票。初始资金为0.
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        // 3. 推导递推公式
        for(int i = 1; i < length; i++){
            // 4. 后一天的状态与前一天的有关
            // 4.1 前一天持有今天还持有,前一天不持有今天持有,由于只能买一次,所以直接从0减去。找出最大值。
            dp[i][0] = Math.max(dp[i - 1][0], -prices[i]);
            // 4.2 前一天不持有今天还不持有,前一天持有今天不持有。找出最大值。
            dp[i][1] = Math.max(dp[i - 1][1], (dp[i - 1][0] + prices[i]));
        }
        // 5.最后一天肯定是不持有
        return dp[length - 1][1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值