45、跳跃游戏Ⅱ

题目

给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。

每个元素 nums[i] 表示从索引 i 向后跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。
示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:

输入: nums = [2,3,0,1,4]
输出: 2

解题思路

解题思路:贪心算法,每一步尽可能增加覆盖范围。记录下一次跳跃的最大步数,每次到达覆盖范围末尾就进行下一次跳跃。同时统计跳跃的次数。
时间复杂度:O(n),空间复杂度:O(1)

代码

class Solution {
    public int jump(int[] nums) {
        // 1. result记录跳跃次数,cover记录覆盖范围,next记录下一次的最大跳跃步数
        int result = 0;
        int cover = 0;
        int next = 0;
        // 2. 遍历数组
        for(int i = 0; i < nums.length; i++){
            // 3.记录下一次跳跃的最大步数
            next = Math.max(next, nums[i] + i);
            // 4.如果遍历到当前覆盖范围的末尾
            if(i == cover){
                // 4.1 如果覆盖范围不是数组末尾,就再次跳跃,并且更新覆盖范围
                if(cover != nums.length - 1){
                    result++;
                    cover = next;
                }
                // 4.2 如果覆盖范围包含终点位置,就退出
                if(cover >= nums.length - 1){
                    break;
                }
            }
        }
        return result;
    }
}
### 跳跃游戏 II 的算法实现 跳跃游戏 II 是一道经典的贪心算法问题,目标是从数组的第一个位置跳到最后一个位置,并返回最少的跳跃次数。以下是基于 Go 语言的解决方案。 #### 算法思路 该问题可以通过维护当前能够覆盖的最大范围来解决。每次当遍历的位置达到上一次记录的最大边界时,更新最大边界并增加跳跃次数[^1]。这种方法的核心在于利用局部最优解(即每一步尽可能远地跳跃)来获得全局最优解。 #### 实现代码 (Go) ```go package main import ( "fmt" ) func jump(nums []int) int { if len(nums) <= 1 { return 0 } jumps := 0 // 记录跳跃次数 currentEnd := 0 // 当前区间的最右端 farthest := 0 // 可以到达的最远距离 for i := 0; i < len(nums)-1; i++ { // 更新能到达的最远距离 if nums[i]+i > farthest { farthest = nums[i] + i } // 到达当前区间边界时触发跳跃 if i == currentEnd { jumps++ currentEnd = farthest // 如果已经可以到达终点,则提前结束循环 if currentEnd >= len(nums)-1 { break } } } return jumps } func main() { nums := []int{2, 3, 1, 1, 4} // 测试数据 fmt.Println(jump(nums)) // 输出最小跳跃次数 } ``` 上述代码通过 `jumps` 来计数跳跃次数,`currentEnd` 表示当前步所能到达的最远索引,而 `farthest` 则表示下一步可能到达的最远索引。每当遍历到 `currentEnd` 时,就执行一次跳跃操作并将新的边界设置为 `farthest`。 #### 复杂度分析 - **时间复杂度**: O(n),其中 n 是输入数组的长度。因为只需要遍历整个数组一次。 - **空间复杂度**: O(1),仅使用了常量级额外存储空间。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值