题目
给定一个长度为 n 的 0 索引整数数组 nums。初始位置为 nums[0]。
每个元素 nums[i] 表示从索引 i 向后跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:
0 <= j <= nums[i]
i + j < n
返回到达 nums[n - 1] 的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]。
示例 1:
输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。
示例 2:
输入: nums = [2,3,0,1,4]
输出: 2
解题思路
解题思路:贪心算法,每一步尽可能增加覆盖范围。记录下一次跳跃的最大步数,每次到达覆盖范围末尾就进行下一次跳跃。同时统计跳跃的次数。
时间复杂度:O(n),空间复杂度:O(1)
代码
class Solution {
public int jump(int[] nums) {
// 1. result记录跳跃次数,cover记录覆盖范围,next记录下一次的最大跳跃步数
int result = 0;
int cover = 0;
int next = 0;
// 2. 遍历数组
for(int i = 0; i < nums.length; i++){
// 3.记录下一次跳跃的最大步数
next = Math.max(next, nums[i] + i);
// 4.如果遍历到当前覆盖范围的末尾
if(i == cover){
// 4.1 如果覆盖范围不是数组末尾,就再次跳跃,并且更新覆盖范围
if(cover != nums.length - 1){
result++;
cover = next;
}
// 4.2 如果覆盖范围包含终点位置,就退出
if(cover >= nums.length - 1){
break;
}
}
}
return result;
}
}