1、代码下载
git clone https://github.com/Ma-Dan/keras-yolo4
注意 yolo4.weights单独下载, https://drive.google.com/uc?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT&export=download
下载完成后 执行 python convert.py进行转换 自动生成 yolo4_weights.h5。
或者百度网盘直接下载,链接: https://pan.baidu.com/s/1FF79PmRc8BzZk8M_ARdMmw 提取码: dc2j
yolo4_weights.h5是coco数据集的权重。
yolo4_voc_weights.h5是voc数据集的权重。
3、2007_voc数据准备&预处理
wget https://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
wget https://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar
按照格式存放文件
#修改1 训练自己的数据类别
#修改2 训练自己的数据类别
然后执行 python voc_annotation.py 会在 下面的文件夹路径下生成3个txt 文件
防止内存不够 修改 batch_size
4.模型训练
执行 python train.py
5、检测展示
将测试文件放到 下面路径
执行 python test.py
执行结果: