霹雳吧啦Wz

私信 关注
太阳花的小绿豆
码龄4年
  • 334,631
    被访问量
  • 58
    原创文章
  • 17,523
    作者排名
  • 3,215
    粉丝数量
  • 于 2017-02-16 加入CSDN
获得成就
  • 获得802次点赞
  • 内容获得803次评论
  • 获得2,035次收藏
  • GitHub 获得1,498Stars
荣誉勋章
兴趣领域
  • #人工智能
    #图像处理#TensorFlow#Python#自然语言处理#视觉/OpenCV
TA的专栏
  • 深度学习
    21篇
  • pytorch
    16篇
  • 后端开发
    9篇
  • ubuntu16.04
    3篇
  • python项目
    7篇
  • object detection目标检测
    5篇
  • 编程语言
    2篇
  • 数据库
    2篇
  • 算法
    1篇
  • 资源爬取
    1篇
  • tensor操作
    1篇
  • Tensorflow
    25篇
  • 软件安装
    21篇
  • 编程开发
    8篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

PASCAL VOC2012数据集介绍

之前有在Bilibili上简单介绍过这个数据集,但一直没有写博文,今天抽空总结下,如果不想看文章的,可以看下我在Bilibili上的讲解视频。Pascal VOC2012数据集详解视频: https://b23.tv/F1kSCKPascal VOC2012官网地址:http://host.robots.ox.ac.uk/pascal/VOC/voc2012/官方发表关于介绍数据集的文章 《The PASCALVisual Object Classes Challenge: A Retrospecti
原创
1阅读
0评论
0点赞
发布博客于 10 分钟前

Linux安装Pytorch1.8GPU(CUDA11.1)

先说下自己之前的环境(都是Linux系统,差别不大):Centos7.6NVIDIA Driver Version 440.33.01(等会需要更新驱动)CUDA10.1Pytorch1.6/1.7提示,如果想要保留之前的PyTorch1.6或1.7的环境,请不要卸载CUDA环境,可以通过Anaconda管理不同的环境,互不影响。但是需要注意你的NVIDIA驱动版本是否匹配。在这里能够看到官方给的对应CUDA版本所需使用驱动版本。通过上表可以发现,如果要使用CUDA11.1,那么需要将显卡
原创
908阅读
11评论
4点赞
发布博客于 1 月前

EfficientNet网络详解

目录前言论文思想网络详细结构MBConv结构EfficientNet(B0-B7)参数前言原论文名称:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks论文下载地址:https://arxiv.org/abs/1905.11946原论文提供代码:https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet自己使用Pyt
原创
2313阅读
31评论
28点赞
发布博客于 1 月前

RegNet网络结构与搭建

目录前言设计设计空间RegNet网络结构详解RegNet结构框架RegNet block详解RegNetX模型详细参数RegNetY模型详细参数前言原论文名称:Designing Network Design Spaces原论文下载地址:https://arxiv.org/abs/2003.13678.pdf论文中提供的源码: https://github.com/facebookresearch/pycls自己使用Pytorch实现的RegNet代码: Test10_regnet/model.p
原创
945阅读
7评论
14点赞
发布博客于 1 月前

Tensorflow中卷积的padding操作

文章目录Tensorflow中padding为valid的情况Tensorflow中padding为same的情况和Pytorch的padding简单对比实验对比实验1实验2实验3实验4实验5实验6关于Tensorflow中卷积的padding其实在之前的课程中我有讲过,不过本节课会在详细讲解下,并和Pytorch中卷积的padding进行简单的对比。关于Pytorch中卷积的padding可以参考我之前写的一片文章。在Tensorflow中卷积的padding一般需要指定为same或者valid,并
原创
124阅读
0评论
0点赞
发布博客于 1 月前

Pytorch与Tensorflow权重互转

文章目录准备测试输入数据将Pytorch卷积层权重转到Tensorflow中将Pytorch DW卷积层权重转到Tensorflow中将Pytorch BN层权重转到Tensorflow中全连接层完整测试代码在Pytorch以及Tensorflow官方,都有提供一些常用的预训练模型权重(在ImageNet上预训练得到的)。但有些时候,Pytorch官方提供的模型Tensorflow官方并没有。此时就会想些办法,将Pytorch官方提供的模型权重转到Tensorflow的模型中。反之亦然。首先,在Pyto
原创
262阅读
0评论
2点赞
发布博客于 2 月前

MS COCO数据集介绍以及pycocotools简单使用

文章目录1. MS COCO数据集简介2. MS COCO数据集下载3. MS COCO标注文件格式3.1 使用Python的json库查看3.2 使用官方cocoAPI查看1. MS COCO数据集简介官网地址https://cocodataset.org/简介MS COCO是一个非常大型且常用的数据集,其中包括了目标检测,分割,图像描述等。其主要特性如下:Object segmentation: 目标分割Recognition in context: 图像情景识别Superp
原创
485阅读
2评论
3点赞
发布博客于 3 月前

使用Mini-ImageNet训练分类网络

文章目录数据集下载链接数据集简介制作新的train以及val文件训练自己的网络数据集下载链接百度网盘下载:链接: https://pan.baidu.com/s/1Uro6RuEbRGGCQ8iXvF2SAQ 密码: hl31数据集简介提到Imagenet大家都知道,是一个非常大型、有名的开源数据集。一般设计一个新的分类网络就会在Imagenet1000类的数据上进行训练以及验证。包括常见的目标检测网络等,所使用的backbone一般都会先基于Imagenet进行预训练。但对于普通研究员或者开发
原创
572阅读
11评论
5点赞
发布博客于 3 月前

Centos7.5 minimal系统安装VNC

环境配置环境配置操作都是在root用户下进行的:更新系统yum upgrade -y更新安装依赖环境,否则后面安装图形界面时会报错check error: file /boot/efi/EFI/centos from install of fwupdate-efi-12-5.e17.centos.x86_64 conflicts with file from package grub2-common-1:2.02-0.64.el7.centos.noarchyum update grub
原创
80阅读
0评论
0点赞
发布博客于 3 月前

双线性插值

线性插值根据百度百科的介绍:线性插值是指插值函数为一次多项式的插值方式。线性插值的几何意义即为利用过A点和B点的直线来近似表示原函数。线性插值可以用来近似代替原函数,也可以用来计算得到查表过程中表中没有的数值。那么如下图所示,假设已知y1=f(x1)y_1=f(x_1)y1​=f(x1​),y2=f(x2)y_2=f(x_2)y2​=f(x2​),现在要通过线性插值的方式得到区间[x1,x2][x_1, x_2][x1​,x2​]内任何一点的f(x)f(x)f(x)值。通过上图我们很容易得到以下公式:
原创
176阅读
3评论
0点赞
发布博客于 3 月前

通过pycocotools获取每个类别的COCO指标

在目标检测任务中,我们常用的评价指标一般有两种,一种是使用Pascal VOC的评价指标,一种是更加严格的COCO评价指标,一般后者会更常用点。在计算COCO评价指标时,最常用的就是Python中的pycocotools包,但一般计算得到的结果是针对所有类别的,例如: Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.512 Average Precision (AP) @[ IoU=0.50
原创
821阅读
11评论
7点赞
发布博客于 3 月前

Pytest使用记录

Pytest简介Pytest是一个易用、强大、灵活的功能测试框架,并且兼容unittest和nose的测试用例。易用: 用例编写简单, 断言方便强大: 全能的mark, 强大的fixtures灵活: 灵活的执行控制及丰富的插件Pytest安装指令pip install pytestPytest编写规则测试文件以test_开头,或以_test结尾测试类以Test开头,并且不能带有 init 方法测试函数以test_开头断言使用python自带的assert项目结构目录假设我
原创
112阅读
2评论
0点赞
发布博客于 3 月前

Pytorch中多GPU并行计算教程

如果不想看文字的,可以在我bilibili上看录制的视频教程:Pytorch多GPU使用教程常见多GPU使用方法在训练模型中,为了加速训练过程,往往会使用多块GPU设备进行并行训练(甚至多机多卡的情况)。如下图所示,常见的多GPU的使用方法有以下两种(但不局限于以下方法):model parallel,当模型很大,单块GPU的显存不足以放下整个模型时,通常会将模型分成多个部分,每个部分放到不同的GUP设备中(下图左侧),这样就能将原本跑不了的模型利用多块GPU跑起来。但这种情况,一般不能加速模
原创
1090阅读
4评论
4点赞
发布博客于 5 月前

爬取github仓库所有release文件

Github v4(graphql)API测试网址:https://developer.github.com/v4/explorer/查询最新的10个release的tag信息:{ repository(name: "node-sass", owner: "sass") { releases(last: 10) { nodes { tagName } pageInfo { endCursor hasNext
原创
345阅读
2评论
1点赞
发布博客于 6 月前

openvino使用(一)转换并量化(INT8)分类网络模型

在pycharm中使用openvino包,不能直接使用图标启动,要使用终端启动。如果不知道pycharm的启动文件在哪,可以通过以下指令查找:sudo find / -name pycharm.sh找到后进入pycharm.sh所在文件夹,执行该启动脚本:./pycharm.sh将onnx模型转成IR格式(FP16除了模型小一点,没任何提速):python mo.py --input_model ~/my_project/resnet34.onnx --output_dir ~/openvin
原创
1012阅读
4评论
3点赞
发布博客于 7 月前

OpenVINO安装记录(Ubuntu18.04)

首先贴出openvino官网链接,里面有各种系统的安装教程(Linux、windows、macOS)。本教程以ubuntu18.04为例。0. 硬件需求在官方Install Intel Distribution of OpenVINO toolkit for Linux* OS模块中,有给出硬件以及软件的需求,看不惯英文的可以点击右上角的中文文件有中文的教程。1. openvino的下载首先贴出下载链接,在链接中需要填写个人信息才能下载。这里贴出我下载好(2020.4.287版本的),并存在网盘
原创
392阅读
0评论
4点赞
发布博客于 7 月前

python3 自定义logging.Handler, Formatter, Filter模块

在日常使用logging模块中,我们常会使用到官方提供的FileHandler,StreamHandler,RotatingFileHander等,详细参考官方文档, 这些模块都是继承来自与logging.Handler这个父类,而Handler主要用来自定义日志对象的规则(比如:将日志输出到什么地方,哪些日志进行输出、以及日志输出的格式等)。虽然官方提供了很多实现好的Handler,但总有一些特殊情况需要自定义输出日志。比如下面的示例中要将日志输出到kafka集群中,此时我们需要自定义Handler对象。
原创
675阅读
0评论
2点赞
发布博客于 7 月前

Github资源中转至Gitlab

文章目录1 Gitlab的安装与配置1.1Gitlab的安装1.2Gitlab的配置1.2.1gitlab自带nginx的配置1.2.2配置自己下载的nginx2 获取Github资源2.1 v3 api2.2 v4 graph api2.3 clone 仓库源文件3 上传资源至Gitlab3.1 push源码资源3.2 push tags信息3.3 push release信息3.4 修改项目可见性4 WIKI的下载与上传简单说下需求,由于公司内外网是隔离的,为了在内网能够学习github上的一些源码资
原创
423阅读
0评论
1点赞
发布博客于 8 月前

Windows下安装pycocotools

之前在linux系统下安装pycocotools时非常简单,只需:pip install pycocotools如果在windows下通过以上指令安装会报错,网上查询后都说需要安装C++编译器或者VS环境,等等,其实没必要那么麻烦,直接通过一下指令安装即可:pip install pycocotools-windows...
原创
499阅读
3评论
11点赞
发布博客于 10 月前

解决ubuntu18.04 WPS提示缺少字体的问题

在ubuntu18.04上安装Linux版的WPS后,打开原来的文档或PPT(这些文件都是在windows上创建的)会提示缺少字体。通过以下方法可以解决:在一台window电脑上拷贝C:\Windows\Fonts\windows上的字体文件夹(不建议在网上下,大多是坑),传输到ubuntu电脑上将字体文件夹移动到/usr/share/fonts/文件夹下sudo mv ./Fonts/* /usr/share/fonts/wps_symbol_fonts/sudo chmod 777 -R /
翻译
386阅读
0评论
1点赞
发布博客于 10 月前

Python+Scrapy爬虫实战

目录欢迎使用Markdown编辑器首先说下本实例的一个大致需求与思路:需求:需要从一个网址上爬取所有的下载文件,该网址还有很多的子目录,子目录下的文件也要下载,下载后要按照原网址的目录进行摆放。Scrapy是一个功能强大的爬虫框架欢迎使用Markdown编辑器...
原创
402阅读
3评论
1点赞
发布博客于 10 月前

MobileNet(v1、v2)网络详解与模型的搭建

首先给出三个链接:1. MobileNet(v1,v2)网络详解视频2. 使用pytorch搭建mobilenet v2并基于迁移学习训练视频3. 使用tensorlow2搭建mobilenet v2并基于迁移学习训练视频在之前的文章中讲的AlexNet、VGG、GoogLeNet以及ResNet网络,它们都是传统卷积神经网络(都是使用的传统卷积层),缺点在于内存需求大、运算量大导致无法在...
原创
2149阅读
9评论
14点赞
发布博客于 1 年前

ElasticSearch7.6安装与基础操作

最近在学习elasticsearch软件,并搭建一个简单的查询服务。所以在此记录所有最近使用elasticsearch的流程。首先贴出官方文档链接,网上的资料太杂,还是官方的靠谱(吐槽一下,官方文档的链接有时打不开)。https://www.elastic.co/guide/cn/elasticsearch/guide/current/index.html安装elasticsearch7.6...
原创
1276阅读
0评论
1点赞
发布博客于 1 年前

ResNet网络结构详解与模型的搭建

首先给出三个链接:1. ResNet网络结构详解视频2. 使用Pytorch搭建ResNet网络并基于迁移学习训练3. 使用Tensorflow搭建ResNet网络并基于迁移学习训练ResNet网络是在2015年由微软实验室提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。下图是ResNet34层模型的结构...
原创
5729阅读
19评论
29点赞
发布博客于 1 年前

Batch Normalization详解以及pytorch实验

Batch Normalization是google团队在2015年论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》提出的。通过该方法能够加速网络的收敛并提升准确率。在网上虽然已经有很多相关文章,但基本都是摆上论文中的公式泛泛而谈,bn真正是如何运作的很少...
原创
6974阅读
26评论
65点赞
发布博客于 1 年前

GoogLeNet网络结构详解与模型的搭建

首先给出三个链接:1. GoogLeNet网络结构详解视频2. 使用pytorch搭建GoogLeNet网络并训练3. 使用tensorflow搭建GoogLeNet网络并训练GoogLeNet在2014年由Google团队提出(与VGG网络同年,注意GoogLeNet中的L大写是为了致敬LeNet),斩获当年ImageNet竞赛中Classification Task (分...
原创
1706阅读
9评论
6点赞
发布博客于 1 年前

VGG网络结构详解与模型的搭建

首先贴出三个链接:1. VGG网络结构详解视频2. 使用pytorch搭建VGG并训练3. 使用tensorflow搭建VGG并训练VGG网络是在2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出,斩获该年ImageNet竞赛中 Localization Task (定位任务) 第一名 和 Classification Task (分类...
原创
2298阅读
6评论
6点赞
发布博客于 1 年前

AlexNet网络结构详解与模型的搭建

首先贴出三个链接:1.AlexNet网络结构详解视频2. 使用pytorch搭建AlexNet并针对花分类数据集进行训练3. 使用tensorflow搭建AlexNet并针对花分类数据集进行训练AlexNet是2012年ILSVRC 2012(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军网络,分类准确率由传统...
原创
2096阅读
19评论
7点赞
发布博客于 1 年前
Ubuntu16.04 server 安装tensorflow object detection模块
发布Blink于 1 年前

Centos7 安装Tensorflow2.1 GPU以及Pytorch1.3 GPU(CUDA10.1)

这两天GPU设备到了,然后搭建下环境,顺便记录安装流程(注意这里是Centos7),我们先看下安装tensorflow2.1 GPU和Pytorch1.3 GPU所需的环境。当前tensorflow的最新稳定版本是2.1,根据**官网的要求:需要CUDA10.1、cuDNN7.6、TensorRT6.0(可选)**当前Pytorch的最新稳定版本是1.3,根据**官网的要求:需要C...
原创
5423阅读
17评论
12点赞
发布博客于 1 年前

Tensorflow2.1-cpu安装(缺少msvcp140_1.dll)

今天发现tensorflow2.1出稳定版了,然后就更新到最新的tensorflow,先卸载旧版本在安装新版本,安装CPU版本指令如下:# 删除旧版本pip uninstall tensorflow# 安装新版本pip install tensorflow-cpu==2.1.0安装后在导入tensorflow包过程中出现了"Could not find the DLL(s)'ms...
原创
10884阅读
10评论
12点赞
发布博客于 1 年前

在centos7中使用systemd部署flask以及golang程序自启动

最近在部署一些web服务,有的是用python的flask框架写的,有的是用golang的beego框架写的。在部署过程中需要将这些服务变成自启动服务,且需要该服务具有启动失败或中断后能够自动重新启动的功能。当然之前很多人喜欢写个shell脚本来处理,但现在比较主流的方法是通过systemd来管理你的服务,就像系统服务一样,更加方便管理。原理不多说,本文以两个实例进行讲解,一个是通过systemd...
翻译
653阅读
0评论
0点赞
发布博客于 1 年前

pytorch中对于tensor的一些骚操作

使用环境:pytorch1.3.1;python3.6最近在读pytorch官方实现的Faster RCNN代码时,发现了一些非常规的tensor操作,为了方便理解,在此记录下:1. (a[:, None] * b[None, :]).view(-1)这是在计算anchor的k值出现的操作,其中a为一维向量[a1, a2, ..., an],b也为一维向量[b1, b2, ..., b...
原创
567阅读
0评论
3点赞
发布博客于 2 年前

深度学习在图像处理中的应用(tensorflow2.2以及pytorch1.6实现)

本人在读研期间的研究方向是图像处理以及深度学习(主要是图像分类和目标检测)。在做深度学习时使用的是tensorflow深度学习框架,学习全是自学,很多资源都是在Github上找的。我发现现在Github上很多深度学习的开源项目都是用的tensorflow和pytorch框架。所以现在也开始学习pytorch框架,之前一直用的是tensorflow1.x版本,今年正好迎来了新的tensorlfow大...
原创
14896阅读
246评论
196点赞
发布博客于 2 年前

使用python3的h5py包查看keras生成的h5文件内容

近期在使用tensorflow2.0的keras模块,训练的模型权重保存格式是.h5(Hierarchical Data Format,HDF5),然后遇到了个bug,一直无法载入权重,总提示shape不匹配,然后就想看下这个h5文件的内容。在网上了搜了各种使用h5py的方法都无法正确读取keras生成的h5文件内容,纠结这个问题浪费了我1整天的时间。下面说下我的解决办法。首先说下环境:P...
原创
2478阅读
4评论
8点赞
发布博客于 2 年前

tensorflow2.0训练网络的问题(包括BatchNormalization以及Dropout)

近期准备做一些关于深度学习图像篇的教程,主要包括分类网络,目标检测网络、图像分割网络,并以pytorch1.3以及tensorflow2.0分别去搭建实现。近期使用tensorflow2.0训练网络时遇到了很多问题,在这简单做个总结。使用环境:Python3.6(Anaconda管理)、Tensorflow2.0.0rc11.到底使用subclassed API还是使用官方推荐的ke...
原创
1357阅读
11评论
4点赞
发布博客于 2 年前

使用gunicorn部署flask服务

为什么要用gunicorn部署flask当我们以production环境运行flask项目时,通常flask会在控制台打印出一个警告:“WARNING: Do not use the development server in a production enviroment. Use a production WSGI server instead.”什么意思,简单的说就是flask只为我们提...
原创
390阅读
0评论
0点赞
发布博客于 2 年前

解决tensorflow2.0.0在pycharm中cannot find reference问题

今天尝试安装tensorflow2.0.0版本,并使用官方的例程进行测试,虽然程序跑起来没有任何问题,但在我的pycharm中总有很多标黄的地方让我看着非常不爽。主要有以下两个问题:(1)导入keras等模块时总提示cannot find reference(2)我想去查看下函数的定义,但总是提示cannot find declaration to go to接着我在网上找了很久,并...
原创
2164阅读
7评论
3点赞
发布博客于 2 年前

Python3多线程与协程测试

今天简单测试了下python中的多线程与协程,之前在看python的教程中有说到python的多线程其实是在一个线程中来回切换并不会真正的去使用多核资源。如果想真正去利用多核资源,最好的办法是使用python的多进程+协程的方式(协程是一种充分利用单核资源的方法)。注意:并不是说协程一定比多线程效率高,这需要看情况,有的时候协程也会慢的和单线程一样。下面我对不使用线程,使用线程以及使用协程进行了简...
原创
411阅读
1评论
1点赞
发布博客于 2 年前

pytorch中的卷积操作详解

首先说下pytorch中的Tensor通道排列顺序是:[batch, channel, height, width]我们常用的卷积(Conv2d)在pytorch中对应的函数是:torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=Tr...
原创
12291阅读
8评论
51点赞
发布博客于 2 年前

flask项目结构

之前简单的学习过go的beego框架,这两天简单接触了下python的flask框架,通过pycharm创建的flask项目感觉各功能模块之间分的不够清晰,如下表为pycharm创建的flask项目结构:+flaskProject +static +templates -app.py其中,static文件夹用来存放静态文件,templates文件夹用来放模板文件,...
原创
243阅读
0评论
0点赞
发布博客于 2 年前

使用Python3和Golang对MYSQL进行操作

Python操作mysqlpython3需要使用的第三方包:pymysql、sqlalchemy概念性的东西不多介绍,有想了解的推荐一篇博文:https://www.jianshu.com/p/65903a69d61d下面给出了一个简单的实例:from sqlalchemy import create_engine, Column, BIGINT, DateTime, Strin...
原创
193阅读
0评论
0点赞
发布博客于 2 年前

python3通过paramiko远程交互式控制Linux服务器

这几天一直在想办法通过ssh方法通过自己工作的windows端去访问控制远程的Linux服务端,为后期的服务器自动化做准备。这几天几乎把能想到的知识点全都百度了一遍,不会google(比较菜),但没有找到自己想要的方式,有的代码也无法正常运行。经过自己的研究测试,发现:(1)如果想实现真正的交互式,在paramiko中必须使用invoke_shell()的方式。(2)网上大部分都是使用的非...
原创
1379阅读
2评论
2点赞
发布博客于 2 年前

python3查询hbase的表格名称以及占用空间大小

最近在服务器上安装了hbase数据库,然后尝试着用python3去查询数据库的信息以及各表格的占用空间,总结如下:hbase是使用java语言写的,所以hbase原生支持java,同时也对于别的语言提供了thrift接口,通过thrift接口我们可以通过python(还支持其他语言)去对数据库进行处理。所以我们需要在服务器端安装thrift,本文安装的版本为0.11.0,安装使用thrift参...
原创
504阅读
0评论
0点赞
发布博客于 2 年前

ubuntu16.04 server hbase1.2.6离线安装

今天在ubuntu服务器上尝试安装hbase,参考了网上的教程,遇到了各种坑,所以写个博文记录以下,避免以后采坑。首先给出参考的几篇文章链接:Ubuntu16.04 下 hadoop的安装与配置(伪分布式环境)Linux 下ZooKeeper安装Hadoop2.7.1 安装提示SHUTDOWN_MSG: Shutting down NameNode at java.net.Unkn...
转载
145阅读
0评论
0点赞
发布博客于 2 年前

使用Tensorflow搭建并训练TextCNN模型,对文本进行分类

最近有学习关于文本分类的深度学习模型,最先接触的就是TextCNN模型,该模型看起来非常简单效果也非常好,在此简单记录下整个模型的搭建以及训练过程。通过本博文,你可以自己搭建并训练一个简单的文本分类模型,本文的代码注释非常详细。使用的开发环境:python3(Anaconda管理)、Tensorflow1.13.1本文主要分为以下几个部分进行展开讲解:(1)TextCNN原理(2)...
原创
1131阅读
1评论
1点赞
发布博客于 2 年前

keras中Lambda层的使用

在keras中搭建模型常用的方法有两种:(1)一种是较为简单的序列模型Sequential(该方法适用于搭建简单的模型)(2)一种是使用Keras函数式的API(该方法最为常用)无论使用哪种方法在搭建model时都要求使用keras中继承自Layer的层(例如keras.layers.Conv1D等等),但有时候又需要使用一些keras.layers中没有的层(例如expand_dim...
翻译
10678阅读
7评论
5点赞
发布博客于 2 年前

tensorflow object detection的简单使用(一)

在上一篇博文中,简单介绍了如何在ubuntu16.04上安装google提供的基于tensorflow的object detection模块。本篇博文简单介绍如何去使用这个模块,主要以训练PASCALVOC2012数据集为例进行讲解。什么是PASCAL VOC,如果有不了解的同学可以抽点时间看下这篇博文这个博主讲的很详细,简单来说就是拥有20个类别的目标检测数据集(当然除了目标检测还有目标分割等...
原创
2371阅读
11评论
5点赞
发布博客于 2 年前

Ubuntu16.04 server 安装tensorflow object detection模块

安装提醒:本博文是在ubuntu16.04服务器(只有黑框框,没有图形界面,推荐使用MobaXterm之类的远程控制软件,方便访问服务器)上离线安装的tensorflow object detection模块。因为服务器不能连外网,所以只能通过提前在外网下载好所需要的各种包工具传入服务器中进行安装。官网中也有安装教程,但你第一次安装可能会遇到坑(由你的开发环境决定)。对于学习深度学习(图像这块...
原创
1019阅读
1评论
5点赞
发布博客于 2 年前

Python3的简单语法与常用库(慢慢更新中)

之前学习Python的时候,主要是在网上简单看了些文档,并没有系统的去学习过,前些天抽空在中国大学MOOC上学习了由北京理工大学嵩天老师讲授的免费公开课--Python语言程序设计。这个课程讲的比较基础,但讲的确实不错。本文档主要就是总结下Python的基础语法与公开课中讲到的一些简单库的使用以及一些代码示例,方便以后需要的时候查看(通过右侧目录直接跳转到你需要查看的位置)。常用基础...
翻译
584阅读
0评论
3点赞
发布博客于 2 年前

Golang离线安装GORM与Beego

当所用电脑无法联网时,无法直接通过go get指令安装所需库,这时就需要采用离线的安装方式go install(本人是提前在有网络的电脑上下载好安装文件,然后拷贝到无法联网的电脑上进行安装)GORM安装GORM是一个友好的,方便的通过golang操作数据库(包括MySQL等)的包。如果电脑联网并有git的话安装很方便可直接通过以下指令安装即可。go get github.com/ji...
原创
893阅读
0评论
0点赞
发布博客于 2 年前

数据库MySQL 5.6.45的安装

本博文主要记录本人安装MySQL的过程以及安装过程中出现的问题,网上的参考博文太多太杂,还是自己记录最保险。本博文分别记录了在win7系统下,和linux系统下的安装过程。在window7下安装mysql 5.6.45(1)首先在官网下载安装包,链接(在右侧的Looking for previous GA version中可以选择早期版本,我选的是5.6.45版本)(2)下载解压后在系...
原创
2665阅读
0评论
0点赞
发布博客于 2 年前

C++中调用Tensorflow的pb文件(二)

在之前的博文中有讲到如何编译安装c++版的Tensorflow,并简单调用自己训练的pb文件(若需要使用python进行调用pb文件请参考这个博文)。在本文中将进一步结合代码调用pb文件。之前经常使用google发布在github上基于tensorflow的object detection模块,在该模块中官方事先提供了一系列预训练模型,如下图所示,我们可以直接使用这些模型也可以针对自己的项目进行r...
原创
4513阅读
28评论
4点赞
发布博客于 2 年前

计算目标检测任务中的mAP

mAP(Mean Average Precision)均值平均准确率,即检测多个目标类别的平均准确率。在目标检测领域mAP是一个最为常用的指标。具体概念不叙述,本文主要讲如何利用Github上一些开源项目计算自己网络的mAP值等信息。首先给出两个Github链接,链接1;链接2。这两个链接项目都可以帮助我们计算mAP的值,用法也差不多,链接1感觉用起来更简单点,链接2的功能更全面点(绘制的Prec...
原创
1056阅读
0评论
2点赞
发布博客于 2 年前

pyqt5界面的布局与资源文件的载入

在阅读本博文之前建议先阅读下我之前写的文章python3+pyqt5+opencv3简单使用。在利用pyqt5设计界面过程中可能会遇到放大缩小或最大化界面时控件的布局并没有跟着改变,导致界面看上去非常的丑。故本博文通过设计一个简单的界面来简要介绍界面的布局方法以及资源文件的载入。下图为原始界面与最大化后的界面的外观:从图中可以看出将软件界面最大化后各控件也会跟着调整(主要是图像显示...
原创
1647阅读
1评论
4点赞
发布博客于 2 年前

Ubuntu16.04下Tensorflow C++编译并调用pb文件(一)

通常tensorflow训练深度学习网络都是在python语言中实现的,因为在python环境中安装tensorflow非常方便并且tensorflow针对python的接口也非常友好,但有些时候我们又必须在C++环境中进行开发。所以我们希望利用python去训练网络,训练完后将网络冻结生成pb文件,然后通过C++版的tensorflow进行调用。但编译C++版的tensorflow相对pytho...
翻译
5321阅读
29评论
4点赞
发布博客于 2 年前

YOLO v3网络结构分析

相信阅读了YOLO v3论文的小伙伴们会发现为什么这次的论文篇幅这么少?除去参考文献就四面?Excuse me?我是下了篇假文献吧。读完后感觉内容确实不多,而且总感觉写的不够细致,很多地方都比较模糊,可能是作者想让大家去观摩他的代码吧。本人是小白,看后表示有点蒙。于是在Github上搜了大牛们基于Tensorflow搭建的YOLOv3模型进行分析(本人只接触过TF,所以就不去看caffe的源码...
原创
90498阅读
160评论
168点赞
发布博客于 3 年前

SSD算法Tensorflow版详解(二)

Loss函数计算SSD的Loss函数包含两项:(1)预测类别损失(2)预测位置偏移量损失:Loss中的N代表着被挑选出来的默认框个数(包括正样本和负样本),L(los)即位置偏移量损失是Smooth L1 loss(是默认框与GTbox之间的位置偏移与网络预测出的位置偏移量之间的损失),L(conf)即预测类别损失是多类别softmax loss,α的值设置为1.  Smooth L1 loss定...
原创
3341阅读
5评论
2点赞
发布博客于 3 年前

SSD算法Tensorflow版详解(一)

之前看了SSD的论文,但也只是仅仅停留在论文层面,这几天在github上找到了一位大神在一年前用Tensorflow实现了SSD算法。这几天也抽空阅读了下代码,主要分析了下几个重要的模块,接下来做一个简单的总结。SSD(Single Shot MultiBox Detector)是大神Wei Liu在 ECCV 2016上发表的一种的目标检测算法。对于输入图像大小300x300的版本在VOC200...
原创
24456阅读
25评论
23点赞
发布博客于 3 年前

打包tfrecord文件,并读取

Tfrecord文件是tensorflow专门设计的一种训练样本储存格式,将训练样本打包成tfrecord格式后能够加快文件的读取效率。所以训练网络的第一步就是将自己的训练集样本打包生成tfrecord格式。本文主要介绍两种tfrecord打包方式,这两种方式的主要区别在于生成的tfrecord文件大小不同。方式一:利用常用图像处理库读取图像并解码,转换成二进制文件进行存储,网络上找到的基本上都是...
翻译
1126阅读
0评论
0点赞
发布博客于 3 年前

Ubuntu16.04+pycharm+pyqt5安装与配置

之前在windows下经常用python+pyqt5一起开发,今天在ubuntu16.04上安装了pyqt5并且与pycharm进行了配置。pycharm的安装过程直接略过,本文主要讲下pyqt5的安装以及与pycharm的配置。安装指令有如下2条:sudo apt-get install qt5-defaultsudo apt-get install qttools5-dev-toolsok...
翻译
8052阅读
7评论
7点赞
发布博客于 3 年前

Python3+Opencv3常用函数(慢慢更新中)

本博文主要记录在python3编程环境下常用的一些opencv3函数,可根据左侧的目录选择自己需要使用的函数说明。图像的读取、分割以及保存import cv2import numpy as npimg = cv2.imread('test.jpg') # 读入一张图片,注意Opencv彩色图像排序是BGRim_height, im_width, im_dep = img.sha...
翻译
7456阅读
6评论
12点赞
发布博客于 3 年前

python3+pyqt5+opencv3简单使用(慢慢更新中)

关于python3下搭建pyqt5(pycharm)参考这条链接。对于pyqt的使用个人比较建议ui设计与逻辑功能分开开发。下面介绍下简单的使用(通过左侧的目录可直接跳转到相应模块):ui界面的建立通过pycharm的Tools->External Tools->QtDesigner打开界面设计窗口(本文以创建一个Main Window为例)。...
原创
19830阅读
9评论
32点赞
发布博客于 3 年前

Ubuntu16.04下python3.5和C++安装 / 卸载opencv

首先说明一点,在Ubuntu环境下编译opencv后python和C++都是可以使用的。编译opencvUbuntu16.04 自带python2.7和python3.5两个版本,默认为python2.7,我使用的是3.5,所以首先将默认的python版本改为3.5.在终端输入下列指令: sudo update-alternatives --install /usr/bin/...
翻译
3394阅读
0评论
4点赞
发布博客于 3 年前

ubuntu16.04+cuda8.0+cudnn6.0+python3.5+Tensorflow1.4_GPU

这近一个星期一直在搭建Ubuntu16.04下的tensorflow1.4-GPU环境,但网上的教程各有不同,始终有问题,今天可能碰巧搭建好了,就记录下流程。我的硬件设备,CPU:I5-7500,RAM:8G,  GPU: NVIDIA 1050卡。首先声明我装的是双系统,WIN10和Ubuntu16.04.在装Ubuntu时主要参考的是这篇博客。但安装过程中出
原创
1829阅读
0评论
0点赞
发布博客于 4 年前

Win10 配置tensorflow1.3 GPU版本以及tensorboard的使用

以前一直使用的tensorflow1.2 CPU版本的,但最近重装了系统,索性装装tensorflow1.3 GPU版本的试试(我在安装时发现已经更新到1.3版本了,所以装的是1.3)。本人电脑使用的是Win10 64位的系统,显卡使用的是NVIDIA GeForce GTX 1050.再装tensorflow GPU版本的过程中遇到了很多的问题,查看了很多人的博文,用了两天的时间才真正装
翻译
2830阅读
0评论
0点赞
发布博客于 4 年前

python3.6 安装opencv

之前在C++中经常使用Opencv,最近又在使用python,所以想在python中使用Opencv。我的软件平台是win10(64位),通过Anconda3装的python3.6.开始我在网上搜了下相关文献,在此推荐一篇博文: http://blog.csdn.net/lwplwf/article/details/61616493推荐博文方法有些人可以安装好Opencv有些人安装出现
原创
9689阅读
2评论
1点赞
发布博客于 4 年前

用tensorflow1.2.1版本调试出了一个小实例并用tensorboard查看graph以及summary

这几天在看面向机器智能的tensorflow实践这本教材,在第三章的最后有一个实例,我照着敲了代码看看结果,由于书本中用的是低版本的tensdoflow所以有些代码进行了修改,修改过程中踩了一些坑,最后还是调试出来了。import tensorflow as tfgraph = tf.Graph() # 显式创建一个Graph对象with graph.
原创
707阅读
0评论
0点赞
发布博客于 4 年前

利用tensorflow1.2.1中的tensorboard显示数据流程图

这几天才装了tensorflow1.2.1找到一本tensoflow的教材但版本并不是1.2.1而是低版本。推荐下(面向机器智能的Tensorflow实践)个人觉得不错。这本书中讲了如何打开graph,但是我怎么按着做都打不开,后来踩了很多坑后终于打开了。第一,首先建议使用Google的chrome浏览器,我用360和IE打开都是白板,用chrome可以打开,但是graph模块中无
原创
4173阅读
0评论
0点赞
发布博客于 4 年前

关于海康威视网络摄像机二次开发问题

最近一个星期一直在研究海康威视的网络摄像机二次开发问题,纠结了很久。今天终于走通了一部分,记下来希望能够帮助到更多人。现在是用的  VS2013 + opencv 进行测试。首先推荐两篇对我帮助很大的博文:               http://blog.csdn.net/wanghuiqi2008/article/details/31410509               这篇很详细的讲解...
原创
29094阅读
23评论
7点赞
发布博客于 4 年前