快速幂、取整取模

快速幂

例子:求 a b   m o d   m a^b \ mod \ m ab mod m的值。

a 7 a^7 a7 7 二进制为(111) a 7 a^7 a7 = a 4 a^4 a4 * a 2 a^2 a2 * a 1 a^1 a1
a 18 a^{18} a18 18 二进制为(10010) a 18 a^{18} a18 = a 16 a^{16} a16 * a 2 a^2 a2
a的任意次幂都可以由多个不同的a的 2 k 2^k 2k次幂相乘得到,可以通过对a不断平方并把结果赋值给a,依次得到 a 2 0 a^{2^0} a20 (a), a 2 1 a^{2^1} a21 a 2 a^2 a2 = a * a), a 2 2 a^{2^2} a22 a 4 a^4 a4 = a 2 a^2 a2 * a 2 a^2 a2), …… a 2 k a^{2^k} a2k,即通过不断地进行 a = a * a;

a b a^b ab 𝑚𝑜𝑑 𝑚 = ( a k a^k ak 𝑚𝑜𝑑 𝑚 )* ( a t a^t at 𝑚𝑜𝑑 𝑚 )(k + t = b),因此求 a b a^b ab 𝑚𝑜𝑑 𝑚 的值可由以下代码实现

int quick_pow (int a, int b)
{
	int res = 1;
    while (b) 
    {
        if (b&1) 
            res = res * a % mod;
        a = a*a % mod;
        b >>= 1;
    }
    return res;
}

以b = 5为例来看上面代码,5二进制为(101),“&”为按位与运算
b = 101,b&1 = 1; res = a; a = a*a;
b = 10,b&1 = 0; (res = res * a % mod;不执行),res = a;a = a 2 a^2 a2 * a 2 a^2 a2
b = 1,b&1 = 1;res = a * a 4 a^4 a4 ;a = a 4 a^4 a4 * a 4 a^4 a4
b = 0,退出循环
res的值即为 a 5 a^5 a5

应用

快速幂可以用来计算斐波那契数列。
已知斐波那契数列 F ​ n F_​n Fn = F ​ n − 1 F_​{n−1} Fn1 + F ​ n − 2 F_{​n−2} Fn2 ​​(n>=3), F 1 F_1 F1 = 1, F ​ 2 F_​2 F2 ​​= 1
由斐波那契数列定义可得
在这里插入图片描述
只需利用快速幂计算 [ 1 1 1 0 ] n − 1 \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \quad [1110]n1再与 [ f ( 2 ) f ( 1 ) ] \begin{bmatrix} f(2) \\ f(1) \end{bmatrix} \quad [f(2)f(1)] 相乘即可得出f(n)。

关于取整的经典题目

∑ k = 1 n ⌊ n k ⌋ \sum_{k = 1}^n⌊\frac n k⌋ k=1nkn,n <= 1 0 9 10^9 109

容易发现使得 ⌊ n k ⌋ ⌊\frac n k⌋ kn每种取值的k一定是连续的一段区间。
在这里插入图片描述
例如,使10/k值为1 的 k 在连续区间[6,10]。
因此,只要知道每种不同取值k的区间长度,把不同n/k的值乘以区间长度,再相加,即可得到结果。
左端点 l 从1开始,易知,每次新区间的左端点等于上一个区间的右端点加1
x = n / l,右端点 r 是满足n / r = x的最大正整数, n 除以r 向下取整为x,所以n >= x * r,只有当 r = n / x 向下取整时,r才为最大。
所以r = n / x = n / (n / l);

int count (int n)
{
	int ans = 0;
	for (int l = 1, r = 1; l <= n; l = r + 1)
	{
		r = n / (n / l);
		ans += n / l * (r - l + 1);
	}
	return ans;
}

取整与取模的转换

𝑛 𝑚𝑜𝑑 𝑚 = 𝑛 −𝑚 ⌊ n m ⌋ ⌊\frac n m⌋ mn

∑ k = 1 n n m o d      k \sum_{k = 1}^n n\mod\ k k=1nnmod k,n <= 1 0 9 10^9 109

∑ k = 1 n n m o d      k \sum_{k = 1}^n n\mod\ k k=1nnmod k = ∑ k = 1 n n − k ∗ ⌊ n k ⌋ \sum_{k = 1}^n n-k*⌊\frac n k⌋ k=1nnkkn =n * n - ∑ k = 1 n k ∗ ⌊ n k ⌋ \sum_{k = 1}^n k*⌊\frac n k⌋ k=1nkkn

# include <iostream>
using namespace  std;

int count (int n)
{
	int ans = 0;
	for (int l = 1, r = 1; l <= n; l = r + 1)
	{
		r = n / (n / l);
		ans += (l+r)*(r-l+1)/2*(n/l);
	}
	return ans;
}

int main ()
{
    int n;
    cin >> n;
    cout <<n*n - count(n);
    return 0;
}

对每个区间[l,r], ⌊ n k ⌋ ⌊\frac n k⌋ kn = n / l,是个固定值

∑ k = l r k ∗ ⌊ n k ⌋ \sum_{k = l}^r k*⌊\frac n k⌋ k=lrkkn = ⌊ n k ⌋ ⌊\frac n k⌋ kn * ∑ k = l r k \sum_{k = l}^r k k=lrk = ⌊ n k ⌋ ⌊\frac n k⌋ kn * (l+r) * (r-l+1)/2 = (n/l) * (l+r)*(r-l+1)/2

由此,可以求出每个区间 ∑ k = l r k ∗ ⌊ n k ⌋ \sum_{k = l}^r k*⌊\frac n k⌋ k=lrkkn的值,从而得到 ∑ k = 1 n k ∗ ⌊ n k ⌋ \sum_{k = 1}^n k*⌊\frac n k⌋ k=1nkkn的值。

∑ k = 1 n n m o d      k \sum_{k = 1}^n n\mod\ k k=1nnmod k = n * n - ∑ k = 1 n k ∗ ⌊ n k ⌋ \sum_{k = 1}^n k*⌊\frac n k⌋ k=1nkkn可以求出最终结果

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值