代码随想录训练营Day31:● 理论基础 ● 455.分发饼干 ● 376. 摆动序列 ● 53. 最大子序和

文章讨论了解决LeetCode中的四个问题:分发饼干(按贪心策略分配饼干),摆动序列(寻找最长摆动子序列),以及最大子序和(求解连续子数组的最大和)。作者分享了使用贪心算法和数组排序技巧的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论基础

贪心基础

455.分发饼干

题目链接

https://leetcode.cn/problems/assign-cookies/description/

题目描述

在这里插入图片描述

思路

自己写的,因为没有事先对两个数组进行排序,所以出现了问题

class Solution {
    public int findContentChildren(int[] g, int[] s) {
        Arrays.sort(s);
        Arrays.sort(g);
       ArrayList<Integer> list = new ArrayList<>();
        for (int i = 0; i < s.length; i++) {
            list.add(s[i]);
        }
        int count = 0;
        for (int i = 0; i < g.length; i++) {
            Iterator<Integer> iterator = list.iterator();
            while (iterator.hasNext()) {
                Integer integer = iterator.next();
                if (g[i] <= integer) {
                    count++;
                    iterator.remove();
                    break;
                }
            }
        }
        return count;
    }
}

1、

public static int findContentChildren(int[] g, int[] s) {
        //优先考虑大胃口,大饼干先喂饱大胃口
        Arrays.sort(g);
        Arrays.sort(s);
        int count = 0;
        int start = s.length-1;
        for (int i = g.length-1; i >= 0;i--) {
            if(i>=0&&g[i]<=s[start]){
                start--;
                count++;
            }
        }
        return count;
}

2、

public static int findContentChildren(int[] g, int[] s) {
        
        //优先考虑饼干,小饼干先喂饱小胃口
        Arrays.sort(g);
        Arrays.sort(s);
        int count = 0;
        int start = 0;
        for (int i = 0; i < s.length&&start<g.length; i++) {
            if(s[i]>=g[start]){
                start++;
                count++;
            }
        }
        return count;
    }

376. 摆动序列

题目链接

https://leetcode.cn/problems/wiggle-subsequence/description/

题目描述

在这里插入图片描述

思路

在这里插入图片描述

有点小懵

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if (nums.length <= 1) {
            return nums.length;
        }
        //当前差值
        int curDiff = 0;
        //上一个差值
        int preDiff = 0;
        int count = 1;
        for (int i = 1; i < nums.length; i++) {
            //得到当前差值
            curDiff = nums[i] - nums[i - 1];
            //如果当前差值和上一个差值为一正一负
            //等于0的情况表示初始时的preDiff
            if ((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)) {
                count++;
                preDiff = curDiff;
            }
        }
        return count;
    }
}

53. 最大子序和

题目链接

https://leetcode.cn/problems/maximum-subarray/description/

题目描述

在这里插入图片描述

思路

在这里插入图片描述

//result 存放最后的结果
//count用来统计每次累加的结果
//遍历数组,如果和为负数了,就将前边的丢掉,从下一个重新开始计算
class Solution {
    public int maxSubArray(int[] nums) {
        int result = Integer.MIN_VALUE;
        int count = 0;
        for (int i = 0; i < nums.length; i++) {
            count += nums[i];
            if(count>result) result = count;
            if(count<0) count = 0;
        }
        return result;
    }
}

这个代码太厉害了,就用了这几行!!!

### 代码随想录训练营第37期介绍 #### 报名方式 对于希望参与代码随想录训练营第37期的学习者而言,报名流程相对简便。通常情况下,可以通过官方网站或官方指定的合作平台完成注册并支付费用以获得参加资格。此外,在线填写个人信息表单也是必不可少的一部分,这有助于主办方更好地了解学员背景以便提供个性化指导支持[^2]。 #### 课程内容概述 该训练营旨在帮助参与者深入理解算法设计的核心概念技术,并通过实战练习提高编程能力。具体来说: - **基础巩固阶段**:此部分专注于夯实数据结构基础知识,如数组、链表、栈队列等基本操作及其应用场景;同时也会涉及一些简单而常见的算法模式,比如贪心法、回溯法等。 - **专题强化模块** - 对于像二分查找这样的经典问题进行了细致讲解[L.C.704],不仅限于标准实现方法的教学,更鼓励探索多种可能的解决方案来拓宽思维视野; - 针对动态规划这类较难掌握的内容,则会采用由浅入深的方式逐步引导学生构建起完整的理论框架,并配合大量实例演练加深记忆点; - 还有图论方面的重要知识点覆盖,包括但不限于最短路径计算、最小生成树求解等内容。 - **项目实践环节** 为了使所学知识能够真正转化为实际工作中的生产力,特别设置了基于真实场景下的综合型开发任务作为结业考核之一。这些项目往往围绕当下热门领域展开,例如人工智能、大数据处理等前沿方向,让每位成员都能亲身体验到从构思创意到最后产品发布的全过程。 ```python def binary_search(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] < target: left = mid + 1 elif nums[mid] > target: right = mid - 1 else: return mid return -1 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值