概率论复习笔记(四)大数定律及中心极限定理

本文深入探讨了概率论中的两大核心定理——大数定律和中心极限定理,包括切比雪夫不等式、伯努利大数定律、辛钦大数定律以及列维—林德伯格定理、李雅普诺夫定理和棣莫弗—拉普拉斯定理。通过具体实例解析,帮助读者理解这些定理的应用。
摘要由CSDN通过智能技术生成

基本概念

大数定律

切比雪夫不等式

设随机变量 X X X具有数学期望 E ( X ) = μ , E(X)=\mu, E(X)=μ,方差 D ( X ) = σ 2 , D(X)=\sigma^2, D(X)=σ2,则对于任意正数 ε , \varepsilon, ε,有下列切比雪夫不等式
P { ∣ X − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\{\mid X-\mu\mid\geq\varepsilon\}\leq {\sigma^2 \over \varepsilon^2} P{Xμε}ε2σ2

随机变量序列 { Y n } \{Y_n\} {Yn}依概率收敛于a

如果存在常数a,使对任意的 ε > 0 , \varepsilon>0, ε>0, lim ⁡ n → ∞ P { ∣ Y n − a ∣ < ε } = 1 \lim_{n\to\infty}P\{\mid Y_n-a\mid<\varepsilon\}=1 limnP{Yna<ε}=1成立,则称随机变量序列 { Y n } \{Y_n\} {Yn}依概率收敛于a.

切比雪夫大数定律

如果随机变量序列 { X n } \{X_n\} {Xn}相互独立,各随机变量的期望和方差都有限,而且方差有公共上界,即 D X i ≤ l , i = 1 , 2 , ⋯   , DX_i\leq l,i=1,2,\cdots, DXil,i=1,2,,其中 l l l是与 i i i无相关的常数,则对任意的 ε > 0 \varepsilon>0 ε>0,有
lim ⁡ n → ∞ P ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E X i ∣ < ε = 1. \lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-{1\over n}\sum_{i=1}^{n}EX_i\mid<\varepsilon=1. nlimPn1i=1nXin1i=1nEXi<ε=1.

切比雪夫大数定律的特例:设随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,独立,且 E ( X i ) = μ , D ( X i ) = σ 2 ( i = 1 , 2 , ⋯   ) E(X_i)=\mu,D(X_i)=\sigma^2(i=1,2,\cdots) E(Xi)=μ,D(Xi)=σ2(i=1,2,)则对任意 ε > 0 , \varepsilon>0, ε>0,总有
lim ⁡ n → ∞ P ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε = 1. \lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-\mu\mid<\varepsilon=1. nlimPn1i=1nXiμ<ε=1.

该定律说明:在定律的条件下,当 n n n充分大时, n n n个独立随机变量的平均数的离散程度很小.

伯努利大数定律

如果 u n u_n un n n n次重复独立试验中事件A发生的次数, p p p是事件A在每次试验中发生的概率,则对任意给定的 ε > 0 , \varepsilon>0, ε>0,
lim ⁡ n → ∞ P ∣ u n n − p ∣ < ε = 1. \lim_{n\to\infty}P\mid{u_n\over n}-p\mid<\varepsilon=1. nlimPnunp<ε=1.
该定律说明:在试验条件不改变的情况下, 将试验重复进行多次, 则随机事件的频率在它发生的概率附近摆动.

辛钦大数定律

如果 { X n } \{X_n\} {Xn}是相互独立同分布的随机变量序列,其数学期望 E X i = μ , i = 1 , 2 , ⋯   , EX_i=\mu,i=1,2,\cdots, EXi=μ,i=1,2,,则对任意给定的 ε > 0 , \varepsilon>0, ε>0,
lim ⁡ n → ∞ P ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε = 1. \lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-\mu\mid<\varepsilon=1. nlimPn1i=1nXiμ<ε=1.

该定律说明:对独立同分布的随机变量序列, 只要验证数学期望是否存在, 就可判定其是否服从大数定律.

中心极限定理

列维—林德伯格定理(独立同分布的中心极限定理)

设随机变量 X 1 , X 2 , ⋯   , X n , ⋯ X_1,X_2,\cdots,X_n,\cdots X1,X2,,Xn,独立同分布且 E ( X i ) = μ , D ( X i ) = σ 2 < + ∞ ( i = 1 , 2 , ⋯   ) , E(X_i)=\mu,D(X_i)=\sigma^2<+\infty(i=1,2,\cdots), E(Xi)=μ,D(Xi)=σ2<+(i=1,2,),则对任意实数 x , x, x,
lim ⁡ n → ∞ P { ∑ i = 1 n X i − n μ n σ ≤ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) . \lim_{n\to\infty} P\big\lbrace{\sum_{i=1}^{n}X_i-n\mu\over\sqrt{n}\sigma}\leq x\big\rbrace=\int_{-\infty}^{x}{1\over\sqrt{2\pi}}e^{-{t^2\over2}}dt=\Phi(x). nlimP{n σi=1nXinμx}=x2π 1e2t2dt=Φ(x).

李雅普诺夫定理

若随机变量序列 { X n } \{X_n\} {Xn}相互独立,每个随机变量有期望值 E X n = μ n EX_n=\mu_n EXn=μn及方差 D X n = σ n 2 < + ∞ , n = 1 , 2 , ⋯   , DX_n=\sigma_n^2<+\infty,n=1,2,\cdots, DXn=σn2<+,n=1,2,,

若每个 X n X_n Xn对总和 ∑ n = 1 m X n \sum^{m}_{n=1}X_n n=1mXn影响不大,记 S m = ( ∑ n = 1 m σ n 2 ) 1 2 , S_m=(\sum^{m}_{n=1}\sigma_n^2)^{1\over2}, Sm=(n=1mσn2)21,
lim ⁡ n → ∞ P { 1 S m ∑ n = 1 m ( X n − μ n ) ≤ x } = 1 2 π ∫ − ∞ x e − t 2 2 d t = Φ ( x ) . \lim_{n\to\infty} P\big\lbrace{{1\over S_m}\sum_{n=1}^{m}(X_n-\mu_n)}\leq x\big\rbrace={1\over\sqrt{2\pi}}\int_{-\infty}^{x}e^{-{t^2\over2}}dt=\Phi(x). nlimP{Sm1n=1m(Xnμn)x}=2π 1xe2t2dt=Φ(x).

棣莫弗—拉普拉斯定理( 二项分布以正态分布为极限分布的中心极限定理)

设随机变量 Y 1 , Y 2 , ⋯ Y_1,Y_2,\cdots Y1,Y2,服从参数为 n , p n,p n,p的二项分布,则对于任何实数 x , x, x,
lim ⁡ n → ∞ P { Y n − n p n p q ≤ x } = ∫ − ∞ x 1 2 π e t 2 2 d t = Φ ( x ) . \lim_{n\to\infty} P\big\lbrace{Y_n-np\over\sqrt{npq}}\leq x\big\rbrace=\int_{-\infty}^{x}{1\over\sqrt{2\pi}}e^{{t^2\over2}}dt=\Phi(x). nlimP{npq Ynnpx}=x2π 1e2t2dt=Φ(x).
其中 q = 1 — p . q=1—p. q=1p.

典型例题

设随机变量的方差为25,则根据切比雪夫不等式,有 P { ∣ X − E X ∣ ≤ 10 } P\{\mid X-EX\mid\leq10\} P{XEX10}( ).
( A ) ≤ 0.25 \leq0.25 0.25
( B ) ≤ 0.75 \leq0.75 0.75
( C ) ≥ 0.75 \geq0.75 0.75
( D ) ≥ 0.25 \geq0.25 0.25

答案

D

解析

根据切比雪夫不等式 P { ∣ X − E X ∣ ≥ 10 } ≤ 25 1 0 2 = 0.25 P\{\mid X-EX\mid\geq10\}\leq {25 \over 10^2}=0.25 P{XEX10}10225=0.25

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值