概率论复习笔记(四)大数定律及中心极限定理
基本概念
大数定律
切比雪夫不等式
设随机变量
X
X
X具有数学期望
E
(
X
)
=
μ
,
E(X)=\mu,
E(X)=μ,方差
D
(
X
)
=
σ
2
,
D(X)=\sigma^2,
D(X)=σ2,则对于任意正数
ε
,
\varepsilon,
ε,有下列切比雪夫不等式
P
{
∣
X
−
μ
∣
≥
ε
}
≤
σ
2
ε
2
P\{\mid X-\mu\mid\geq\varepsilon\}\leq {\sigma^2 \over \varepsilon^2}
P{∣X−μ∣≥ε}≤ε2σ2
随机变量序列 { Y n } \{Y_n\} {Yn}依概率收敛于a
如果存在常数a,使对任意的 ε > 0 , \varepsilon>0, ε>0,有 lim n → ∞ P { ∣ Y n − a ∣ < ε } = 1 \lim_{n\to\infty}P\{\mid Y_n-a\mid<\varepsilon\}=1 limn→∞P{∣Yn−a∣<ε}=1成立,则称随机变量序列 { Y n } \{Y_n\} {Yn}依概率收敛于a.
切比雪夫大数定律
如果随机变量序列
{
X
n
}
\{X_n\}
{Xn}相互独立,各随机变量的期望和方差都有限,而且方差有公共上界,即
D
X
i
≤
l
,
i
=
1
,
2
,
⋯
,
DX_i\leq l,i=1,2,\cdots,
DXi≤l,i=1,2,⋯,其中
l
l
l是与
i
i
i无相关的常数,则对任意的
ε
>
0
\varepsilon>0
ε>0,有
lim
n
→
∞
P
∣
1
n
∑
i
=
1
n
X
i
−
1
n
∑
i
=
1
n
E
X
i
∣
<
ε
=
1.
\lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-{1\over n}\sum_{i=1}^{n}EX_i\mid<\varepsilon=1.
n→∞limP∣n1i=1∑nXi−n1i=1∑nEXi∣<ε=1.
切比雪夫大数定律的特例:设随机变量
X
1
,
X
2
,
⋯
,
X
n
,
⋯
X_1,X_2,\cdots,X_n,\cdots
X1,X2,⋯,Xn,⋯独立,且
E
(
X
i
)
=
μ
,
D
(
X
i
)
=
σ
2
(
i
=
1
,
2
,
⋯
)
E(X_i)=\mu,D(X_i)=\sigma^2(i=1,2,\cdots)
E(Xi)=μ,D(Xi)=σ2(i=1,2,⋯)则对任意
ε
>
0
,
\varepsilon>0,
ε>0,总有
lim
n
→
∞
P
∣
1
n
∑
i
=
1
n
X
i
−
μ
∣
<
ε
=
1.
\lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-\mu\mid<\varepsilon=1.
n→∞limP∣n1i=1∑nXi−μ∣<ε=1.
该定律说明:在定律的条件下,当 n n n充分大时, n n n个独立随机变量的平均数的离散程度很小.
伯努利大数定律
如果
u
n
u_n
un是
n
n
n次重复独立试验中事件A发生的次数,
p
p
p是事件A在每次试验中发生的概率,则对任意给定的
ε
>
0
,
\varepsilon>0,
ε>0,有
lim
n
→
∞
P
∣
u
n
n
−
p
∣
<
ε
=
1.
\lim_{n\to\infty}P\mid{u_n\over n}-p\mid<\varepsilon=1.
n→∞limP∣nun−p∣<ε=1.
该定律说明:在试验条件不改变的情况下, 将试验重复进行多次, 则随机事件的频率在它发生的概率附近摆动.
辛钦大数定律
如果
{
X
n
}
\{X_n\}
{Xn}是相互独立同分布的随机变量序列,其数学期望
E
X
i
=
μ
,
i
=
1
,
2
,
⋯
,
EX_i=\mu,i=1,2,\cdots,
EXi=μ,i=1,2,⋯,则对任意给定的
ε
>
0
,
\varepsilon>0,
ε>0,有
lim
n
→
∞
P
∣
1
n
∑
i
=
1
n
X
i
−
μ
∣
<
ε
=
1.
\lim_{n\to\infty}P\mid{1\over n}\sum_{i=1}^{n}X_i-\mu\mid<\varepsilon=1.
n→∞limP∣n1i=1∑nXi−μ∣<ε=1.
该定律说明:对独立同分布的随机变量序列, 只要验证数学期望是否存在, 就可判定其是否服从大数定律.
中心极限定理
列维—林德伯格定理(独立同分布的中心极限定理)
设随机变量
X
1
,
X
2
,
⋯
,
X
n
,
⋯
X_1,X_2,\cdots,X_n,\cdots
X1,X2,⋯,Xn,⋯独立同分布且
E
(
X
i
)
=
μ
,
D
(
X
i
)
=
σ
2
<
+
∞
(
i
=
1
,
2
,
⋯
)
,
E(X_i)=\mu,D(X_i)=\sigma^2<+\infty(i=1,2,\cdots),
E(Xi)=μ,D(Xi)=σ2<+∞(i=1,2,⋯),则对任意实数
x
,
x,
x,有
lim
n
→
∞
P
{
∑
i
=
1
n
X
i
−
n
μ
n
σ
≤
x
}
=
∫
−
∞
x
1
2
π
e
−
t
2
2
d
t
=
Φ
(
x
)
.
\lim_{n\to\infty} P\big\lbrace{\sum_{i=1}^{n}X_i-n\mu\over\sqrt{n}\sigma}\leq x\big\rbrace=\int_{-\infty}^{x}{1\over\sqrt{2\pi}}e^{-{t^2\over2}}dt=\Phi(x).
n→∞limP{nσ∑i=1nXi−nμ≤x}=∫−∞x2π1e−2t2dt=Φ(x).
李雅普诺夫定理
若随机变量序列 { X n } \{X_n\} {Xn}相互独立,每个随机变量有期望值 E X n = μ n EX_n=\mu_n EXn=μn及方差 D X n = σ n 2 < + ∞ , n = 1 , 2 , ⋯ , DX_n=\sigma_n^2<+\infty,n=1,2,\cdots, DXn=σn2<+∞,n=1,2,⋯,
若每个
X
n
X_n
Xn对总和
∑
n
=
1
m
X
n
\sum^{m}_{n=1}X_n
∑n=1mXn影响不大,记
S
m
=
(
∑
n
=
1
m
σ
n
2
)
1
2
,
S_m=(\sum^{m}_{n=1}\sigma_n^2)^{1\over2},
Sm=(∑n=1mσn2)21,则
lim
n
→
∞
P
{
1
S
m
∑
n
=
1
m
(
X
n
−
μ
n
)
≤
x
}
=
1
2
π
∫
−
∞
x
e
−
t
2
2
d
t
=
Φ
(
x
)
.
\lim_{n\to\infty} P\big\lbrace{{1\over S_m}\sum_{n=1}^{m}(X_n-\mu_n)}\leq x\big\rbrace={1\over\sqrt{2\pi}}\int_{-\infty}^{x}e^{-{t^2\over2}}dt=\Phi(x).
n→∞limP{Sm1n=1∑m(Xn−μn)≤x}=2π1∫−∞xe−2t2dt=Φ(x).
棣莫弗—拉普拉斯定理( 二项分布以正态分布为极限分布的中心极限定理)
设随机变量
Y
1
,
Y
2
,
⋯
Y_1,Y_2,\cdots
Y1,Y2,⋯服从参数为
n
,
p
n,p
n,p的二项分布,则对于任何实数
x
,
x,
x,有
lim
n
→
∞
P
{
Y
n
−
n
p
n
p
q
≤
x
}
=
∫
−
∞
x
1
2
π
e
t
2
2
d
t
=
Φ
(
x
)
.
\lim_{n\to\infty} P\big\lbrace{Y_n-np\over\sqrt{npq}}\leq x\big\rbrace=\int_{-\infty}^{x}{1\over\sqrt{2\pi}}e^{{t^2\over2}}dt=\Phi(x).
n→∞limP{npqYn−np≤x}=∫−∞x2π1e2t2dt=Φ(x).
其中
q
=
1
—
p
.
q=1—p.
q=1—p.
典型例题
设随机变量的方差为25,则根据切比雪夫不等式,有
P
{
∣
X
−
E
X
∣
≤
10
}
P\{\mid X-EX\mid\leq10\}
P{∣X−EX∣≤10}( ).
( A )
≤
0.25
\leq0.25
≤0.25
( B )
≤
0.75
\leq0.75
≤0.75
( C )
≥
0.75
\geq0.75
≥0.75
( D )
≥
0.25
\geq0.25
≥0.25
答案
D
解析
根据切比雪夫不等式 P { ∣ X − E X ∣ ≥ 10 } ≤ 25 1 0 2 = 0.25 P\{\mid X-EX\mid\geq10\}\leq {25 \over 10^2}=0.25 P{∣X−EX∣≥10}≤10225=0.25