概率论复习笔记(二)随机变量及其分布

概率论复习笔记(二)随机变量及其分布

基本概念

随机变量及其分布函数

随机变量 : 设随机试验 E E E的样本空间为 Ω \Omega Ω, 如果对于 Ω \Omega Ω内的每一个样本点 e e e都有一个实数x 与之对应, 则称 X X X为随机变量, 记为 X = X ( e ) . X= X(e). X=X(e).

简言之, 随机变量就是定义在样本空间 Ω \Omega Ω上的样本点 e 的实值单值函数 X ( e ) . X(e). X(e).我们一般用大写字母如 X , Y , Z , … X,Y,Z,\dots XYZ,表示随机变量 。

随机变量的分类 :
随 机 变 量 { 离 散 型 非 离 散 型 { 连 续 型 其 他 随机变量 \begin{cases} 离散型 \\ 非离散型 \begin{cases} 连续型 \\ 其他 \end{cases} \end{cases} {

不要误以为 , 一个随机变量如果不是离散型就是连续型的.实际上还存在非离散非连续型的 。

随机变量的取值是有概率规律的, 这种概率规律叫做随机变量的概率分布.在概率分布的描述上,离散型随机变量和连续型随机变量所采用的方法是不同的.前者主要采用列举法, 后者主要采用积分法.

分布函数

X X X 是一个随机变量 , x ,x ,x是任意实数, 函数
F ( x ) = P { X ≤ x } , − ∞ < x < ∞ F(x)=P\{X\leq x\},-\infty<x<\infty F(x)=P{Xx},<x<

称为 X X X的分布函数.

分布函数的性质

  1. 单调性: F ( x ) F(x) F(x)是一个单调不减的函数, 即当 x 1 < x 2 x_1<x_2 x1<x2 , F ( x 1 ) ≤ F ( x 2 ) ; ,F(x_1)\leq F(x_2); ,F(x1)F(x2);

  2. 有界性 :
    0 ≤ F ( x 1 ) ≤ 1 , 且 F ( + ∞ ) = lim ⁡ x → + ∞ F ( x ) = 1 ; F ( − ∞ ) = lim ⁡ x → − ∞ F ( x ) = 0 ; 0\leq F(x_1)\leq 1,且\\ F(+\infty)=\lim_{x\to+\infty}F(x)=1;\\ F(-\infty)=\lim_{x\to-\infty}F(x)=0; 0F(x1)1,F(+)=x+limF(x)=1;F()=xlimF(x)=0;

  3. 连续性: F ( x + 0 ) = F ( x ) , F(x+0)=F(x), F(x+0)=F(x), F ( x ) F(x) F(x)是右连续函数.

用分布函数表示概率:

P { X = a } = P { X ≤ a } − P { X < a } = F ( a ) − F ( a − 0 ) P { X > a } = 1 − P { X ≤ a } = 1 − F ( a ) P { a < X ≤ b } = P { X ≤ b } − P { X ≤ a } = F ( b ) − F ( a ) P { a < X < b } = P { X < b } − P { X ≤ a } = F ( b − 0 ) − F ( a ) P { a ≤ X ≤ b } = P { X ≤ b } − P { X < a } = F ( b ) − F ( a − 0 ) P { a ≤ X < b } = P { X < b } − P { X < a } = F ( b − 0 ) − F ( a − 0 ) P\{X=a\}=P\{X\leq a\}-P\{X<a\}=F(a)-F(a-0)\\ P\{X>a\}=1-P\{X\leq a\}=1-F(a)\\ P\{a<X\leq b\}=P\{X\leq b\}-P\{X\leq a\}=F(b)-F(a)\\ P\{a<X<b\}=P\{X<b\}-P\{X\leq a\}=F(b-0)-F(a)\\ P\{a\leq X\leq b\}=P\{X\leq b\}-P\{X<a\}=F(b)-F(a-0)\\ P\{a\leq X<b\}=P\{X<b\}-P\{X<a\}=F(b-0)-F(a-0)\\ P{X=a}=P{Xa}P{X<a}=F(a)F(a0)P{X>a}=1P{Xa}=1F(a)P{a<Xb}=P{Xb}P{Xa}=F(b)F(a)P{a<X<b}=P{X<b}P{Xa}=F(b0)F(a)P{aXb}=P{Xb}P{X<a}=F(b)F(a0)P{aX<b}=P{X<b}P{X<a}=F(b0)F(a0)

离散型随机变量及其概率分布

离散型随机变量

若随机变量 X X X的全部可能取值是有限个或可列个, 则称 X X X为离散型随机变量.

分布律

离散型随机变量 X X X所有可能取值为 x k ( k = 1 , 2 , ⋯   ) , x_k(k=1,2,\cdots), xk(k=1,2,), 事件 { X = x k } \{X=x_k\} {X=xk}的概率为 P { X = x k } = p k ( k = 1 , 2 , ⋯   ) , P\{X=x_k\}=p_k(k=1,2,\cdots), P{X=xk}=pk(k=1,2,),这里有 0 ≤ p k ≤ 1 , 0\leq p_k\leq 1, 0pk1,并且 ∑ k p k = 1 \sum_kp_k=1 kpk=1则 称 P { X = x k } = p k ( k = 1 , 2 , ⋯   ) P\{X=x_k\}=p_k(k=1,2,\cdots) P{X=xk}=pk(k=1,2,) X X X的分布律或分布列。

分布律也可以写成表格形式:

X X X x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x k x_k xk ⋯ \cdots
P P P p 1 p_1 p1 p 2 p_2 p2 ⋯ \cdots p k p_k pk ⋯ \cdots

性质

离散型随机变量 x的分布律的性质:

  1. P { X = x k } = p k ≥ 0 ( k = 1 , 2 , ⋯   ) P\{X=x_k\}=p_k\geq0(k=1,2,\cdots) P{X=xk}=pk0(k=1,2,)
  2. ∑ k P { X = x k } = ∑ k p k = 1 \sum_kP\{X=x_k\}=\sum_kp_k=1 kP{X=xk}=kpk=1

离散型随机变量 X X X的分布律与分布函数和事件概率的关系

  1. 如果已知 X X X的分布律为 P { X = x k } = p k ( k = 1 , 2 , ⋯   ) , P\{X=x_k\}=p_k(k=1,2,\cdots), P{X=xk}=pk(k=1,2,), X X X的分布函数

F ( x ) = P { X ≤ x } = ∑ x k ≤ x p k ; F(x)=P\{X\leq x\}=\sum_{x_k\leq x}p_k; F(x)=P{Xx}=xkxpk;

而事件的概率为
P { a < X ≤ b } = ∑ a < x k ≤ b p k . P\{a<X\leq b\}=\sum_{a<x_k\leq b}p_k. P{a<Xb}=a<xkbpk.

  1. 如果已知 X X X的分布函数 F ( x ) , F(x), F(x), X X X的分布律为
    P { X = x k } = F ( x k ) — F ( x k — 0 ) , k = 1 , 2 , ⋯   , P\{X=x_k \}=F( x_ k ) — F ( x_ k — 0),k=1,2,\cdots, P{X=xk}=F(xk)F(xk0),k=1,2,,

F ( x ) F(x) F(x) 的值是 X = x X=x X=x点的左边(含 x x x点)全部所有点概率值的累加和.

F ( x ) F(x) F(x)的图形是右升的台阶形, 每个台阶处的跃度等于 X X X取该值的概率.基于这点 , 由 X X X的分布函数的图形可以求出 X X X的分布律

几个重要的离散型随机变量

(0—1) 分布

设随机变量 X只可能取 0 与1 两个值, 它的分布律是 P { X = k } = p k ( 1 − p ) 1 − k , k = 0 , 1 , 0 < p < 1 P\{X=k\}=p^k(1-p)^{1-k},k=0,1,0<p<1 P{X=k}=pk(1p)1k,k=0,1,0<p<1

X X X01
p k p_k pk 1 − p 1-p 1p p p p

(0 — 1) 分布是经常遇到的一种分布, 用来描述只有两种对应结果的伯努利试验( 如成功与失败, 合格与不合格, 出现与不出现等).这些时候我们可以定义一个服从(0 — 1) 分布的随机变量:
X = { 0 , A 不 发 生 1 , A 发 生 X= \begin{cases} 0,A不发生\\ 1,A发生 \end{cases} X={0,A1,A

二项分布

伯努利试验

设试验 E E E只有两种可能结果,A 及 A ‾ \overline{A} A, 则 E E E称为伯努利试验.若将试验 E E E独立地重复进行 n n n次, 则称这个试验为 n n n重伯努利试验.

伯努利试验是一个很重要的数学模型.

二项分布

n n n重伯努利试验中,若 P ( A ) = p , P ( A ‾ ) = 1 — p . P(A)= p,P(\overline{A})= 1—p. P(A)=pP(A)=1p.记X为 n n n次试验中事件A 发生的次数,显然 X X X是一个随机变量, 它的取值为$ 0,1,2,\dots,n.$它的分布律为
P { X = k } = C n k p k ( 1 — p ) n − k , k = 0 , 1 , 2 , … , n , P\{X = k\}= C^k_np^k(1 —p)^{n-k} ,k = 0,1, 2, \dots,n, P{X=k}=Cnkpk(1p)nkk=012,n,
称 X服从参数为 n , p n,p n,p的二项分布,记为
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

二项分布与(0 — 1)分布有着密切关系
  1. 在二项分布中, 若 n = 1 , n=1, n=1, 二项分布就变成 (0 — 1) 分布;

  2. n n n次伯努利试验中, 若只考虑某一次试验,比如第 i i i次试验, 可定义随机变量 X i X_i Xi如下:
    X i = { 1 , 当 A i 发 生 时 0 , 当 A i ‾ 发 生 时 , i = 1 , 2 , ⋯   , n , X_i= \begin{cases} 1,当A_i发生时\\ 0,当\overline{A_i}发生时 \end{cases},i=1,2,\cdots,n, Xi={1,Ai0,Ai,i=1,2,,n,

    X i X_i Xi服从( 0 — 1) 分 布. 对前面的 X X X,显然有 X = ∑ i = 1 n X i . X=\sum_{i=1}^{n}X_i. X=i=1nXi. X X X服从二项分布.所以说: n n n个服从(0-1)分布的且相互独立的随机变量 X i X_i Xi的和服从二项分布.

二项分布分布律中概率的最大值问题

1.取 k 0 = [ ( n + 1 ) p ] , P { X = k 0 } k_0=[(n+1)p],P\{X=k_0\} k0=[(n+1)p]P{X=k0}为分布律中的最大值([ ]为取整记号).
2.若 ( n + 1 ) p = k 0 ( n+ 1)p=k_0 (n+1)p=k0为 整 数, 则 P { X = k 0 } = P { X = k 0 − 1 } P\{X = k0\}=P\{X=k_0-1\} P{X=k0}=P{X=k01}同为分布律中的最大值.

泊松分布

泊松分布的定义

对于常数 λ > 0 \lambda>0 λ>0,如果随机变量 X X X的分布律为
P { X = k } = λ k e k k ! , k = 0 , 1 , 2 , ⋯   , P\{X=k\}=\frac {\lambda^ke^k}{k!},k=0,1,2,\cdots, P{X=k}=k!λkek,k=0,1,2,,
则称 X X X服从参数为 A 的泊松分布, 记为 X ∼ B ( λ ) X\sim B(\lambda) XB(λ).

泊松定理

设有 X ∼ B ( n , p n ) X\sim B(n,p_n) XB(n,pn)和常数 λ > 0 , \lambda> 0, λ>0,如果 n p n = λ , np_n=\lambda, npn=λ,
lim ⁡ n → ∞ C n k p n k ( 1 − p n ) n − k = λ k e − λ k ! , k = 0 , 1 , 2 , ⋯   . \lim_{n\to \infty} C^k_np^k_n(1-p_n)^{n-k}=\frac {\lambda^ke^{-\lambda}}{k!},k=0,1,2,\cdots. nlimCnkpnk(1pn)nk=k!λkeλ,k=0,1,2,.

①泊松定理说明,当 n → ∞ n\to \infty n时,二项分布的极限分布为泊松分布.这从理论上说明了泊松分布的来源.

另一方面也表明 , 当 n n n很大很大时,二项分布可以用泊松分布近似代替.

实践中, 对 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)的情况, 当 n ≥ 50 , n p ≤ 10 n\geq50,np\leq10 n50,np10时,记 λ = n p . \lambda=np. λ=np.则有
C n k p k ( 1 − p ) n − k ≈ λ k e − λ k ! . C^k_np^k(1-p)^{n-k}\approx\frac {\lambda^ke^{-\lambda}}{k!}. Cnkpk(1p)nkk!λkeλ.

② 具有泊松分布的随机变量在实际应用中是很多的, 如一本书一页中的印刷错误字数、 一段时间内电话用户对电话站的呼唤次数 、 电影院的观众数 , 等等. 泊松分布也是概率论中的一种重要分布.

超几何分布

超几何分布定义

KaTeX parse error: No such environment: align at position 57: …{N}^{n}} \begin{̲a̲l̲i̲g̲n̲}̲ ,k=0,1,2,\cdot…

随机变量 X 服从参数为$n, N,M 的 超 几 何 分 布 , 记 为 的超几何分布, 记为 X\sim H( n,N,M)$

超几何分布的含义

N N N个球, 其中有 M M M个白球, N — M N—M NM个黑球.从中取出 n n n个球, 取到 k k k个白球的概率.

几何分布

几何分布定义

P { X = k } = q k − 1 p , k = 1 , 2 , 3 , ⋯ , P \{ X = k \} = q^{k-1}p,k = 1,2,3,\cdots, P{X=k}=qk1p,k=1,2,3 其中 p ≥ 0 , q = 1 − p . p\geq0,q=1-p. p0,q=1p.随机变量 X X X服从参数为 p p p的几何分布, 记为 X ∼ G ( p ) . X\sim G(p). XG(p).

几何分布的背景

每次 A 发生的概率为 p , p, p,而直到第 k k k次才出现A.

连续型随机变量及其概率分布

连续型随机变量

如果对于随机变量 X X X的分布函数 F ( x ) , F(x), F(x),存在非负函数 f ( x ) , f(x), f(x),使对于任意实数 x x x
F ( x ) = ∫ − ∞ x f ( t ) d t , F(x)=\int_{-\infty}^{x}{f(t)dt}, F(x)=xf(t)dt,
则称 X X X为连续型随机变量, 其中函数 f ( x ) f(x) f(x)称为 X X X的概率密度函数, 简称概率密度.

概率密度的性质

  1. f ( x ) ≥ 0 ; f(x)\geq 0; f(x)0;

  2. ∫ − ∞ + ∞ f ( x ) d x = 1 ; \int _{-\infty}^{+\infty}f(x)dx=1; +f(x)dx=1;

  3. 对于任意实数 x 1 , x 2 ( x 1 ≤ x 2 ) , x_1,x_2(x_1\leq x_2), x1,x2(x1x2),
    KaTeX parse error: No such environment: equation at position 23: …<X<x_2\} \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ =F(x_2)-F(x_1)…

  4. f ( x ) f(x) f(x)若在点 x x x处连续,则有 F ′ ( x ) = f ( x ) . F'(x)=f(x). F(x)=f(x).

常见连续型随机变量

均匀分布

均匀分布定义

若连续型随机变量 X X X具有概率密度
f ( x ) = { 1 b − a , a<x< b 0 , 其他, f(x)= \begin{cases} \frac{1}{b-a}, \text{a<x< b} \\ 0, \text{其他,} \end{cases} f(x)={ba1,a<x< b0,其他,
则称 X 在区间 ( a , b ) (a,b) (a,b)上服从均匀分布. 记为 X ∼ U ( a , b ) . X\sim U(a,b). XU(a,b).

X X X的分布函数为
F ( x ) = { 0 , x < a , 1 b − a , a ≤ x < b , 1 , x ≥ b F(x)= \begin{cases} 0, x<a,\\ \frac{1}{b-a},a\leq x< b,\\ 1, x\geq b \end{cases} F(x)=0,x<aba1,ax<b,1,xb

均匀分布的性质

( c , d ) ⊂ ( a , b ) , (c,d)\subset(a,b), (c,d)(a,b),则有
P { c ≤ X ≤ d } = d − c b − a ( 几 何 概 率 ) . P\{c\leq X\leq d\}=\frac{d-c}{b-a}(几何概率). P{cXd}=badc().

指数分布

指数分布定义

若连续型随机变量 X X X 的概率密度为
f ( x ) = { λ e − λ x , x > 0 , 0 , x ≤ 0. f(x)= \begin{cases} \lambda e^{-\lambda x}, x>0,\\ 0,x\leq 0.\\ \end{cases} f(x)={λeλx,x>00,x0.
其中 λ > 0 \lambda>0 λ>0为常数,则称 X X X服从参数为 λ \lambda λ的指数分布.

X X X的分布函数为 F ( x ) = { 0 , x > 0 , 1 − e − λ x , x ≤ 0. F(x)= \begin{cases} 0, x>0,\\ 1-e^{-\lambda x},x\leq 0.\\ \end{cases} F(x)={0,x>01eλx,x0.

指数分布的性质(无记忆性)

X ∼ E ( λ ) , X\sim E(\lambda), XE(λ),则对任何正数 x , x 0 , x,x_0, x,x0,必有
P { X > x + x 0 ∣ X > x 0 } = P { X > x } . P\{X>x+x_0\mid X>x_0\}=P\{X>x\}. P{X>x+x0X>x0}=P{X>x}.

指数分布常用作描述一些电子元件的使用寿命,当 x > 0 x>0 x>0 , P { X > x } = e − λ x ,P\{X>x\}=e^{-\lambda x} ,P{X>x}=eλx

记住积分公式 ∫ 0 + ∞ x n e − x d x = n ! \int_{0}^{+\infty}{x^ne^{-x}dx}=n! 0+xnexdx=n!对指数分布的计算很有帮助, 可能减少许多积分过程.

正态分布

正态分布定义

若连续型随机变量 X X X的概率密度函数为
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < + ∞ ) , f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty<x<+\infty), f(x)=2π σ1e2σ2(xμ)2(<x<+),
其中的正态分布 μ \mu μ σ > 0 \sigma>0 σ>0都是常数,则称服从参数为 μ \mu μ σ \sigma σ的正态分布.简记为$X\sim N(\mu,\sigma^2). $

正态分布的性质
  1. f ( x ) f(x) f(x)的图形关于 x = μ x =\mu x=μ对称;

  2. x = μ x =\mu x=μ时, f ( μ ) = 1 2 π σ f(\mu)=\frac{1}{\sqrt{2\pi}\sigma} f(μ)=2π σ1为最大值.

    X X X的分布函数为
    F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t . F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int _{-\infty}^{x}e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt. F(x)=2π σ1xe2σ2(tμ)2dt.

标准正态分布

μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1时称随机变量 X X X服从标准正态分布.其概率密度和分布函数分别用 φ ( x ) , Φ ( x ) \varphi(x),\Phi(x) φ(x),Φ(x)表示,即有
φ ( x ) = 1 2 π σ e − t 2 2 , Φ ( x ) = 1 2 π σ ∫ − ∞ x e − t 2 2 d t . \varphi(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{t^2}{2}},\\ \Phi(x)=\frac{1}{\sqrt{2\pi}\sigma}\int _{-\infty}^{x}e^{-\frac{t^2}{2}}dt. φ(x)=2π σ1e2t2,Φ(x)=2π σ1xe2t2dt.

标准正态分布的性质
  1. Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(x)=1Φ(x) Φ ( 0 ) = 1 2 \Phi(0)=\frac {1}{2} Φ(0)=21此性质在计算和查表时都是很有用的.

  2. X ∼ N ( μ , σ 2 ) , X\sim N(\mu,\sigma^2), XN(μ,σ2), Z = X − μ σ ∼ N ( 0 , 1 ) . Z=\frac{X-\mu}{\sigma}\sim N(0,1). Z=σXμN(0,1).

    X X X得到 Z Z Z这种做法叫正态分布的标准化步骤.解决正态分布的计算问题最重要的, 首先要考虑的就是对 X X X进行标准化.

  3. X ∼ N ( μ , σ 2 ) , X\sim N(\mu,\sigma^2), XN(μ,σ2),

P { a ≤ X ≤ b } = Φ ( b − μ σ ) − Φ ( a − μ σ ) . P\{a\leq X\leq b\}=\Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma}). P{aXb}=Φ(σbμ)Φ(σaμ).

特例:
P { μ − k σ ≤ X ≤ μ + k σ } = Φ ( μ + k σ − μ σ ) − Φ ( μ − k σ − μ σ ) = Φ ( k ) − Φ ( − k ) = 2 Φ ( k ) − 1 P\{\mu-k\sigma\leq X\leq \mu+k\sigma\}\\ =\Phi(\frac{\mu+k\sigma-\mu}{\sigma})-\Phi(\frac{\mu-k\sigma-\mu}{\sigma})\\ =\Phi(k)-\Phi(-k)\\ =2\Phi(k)-1 P{μkσXμ+kσ}=Φ(σμ+kσμ)Φ(σμkσμ)=Φ(k)Φ(k)=2Φ(k)1

它的等价形式为
P { ∣ X − μ ∣ ≤ k σ } = 2 Φ ( k ) − 1 P\{\mid X-\mu\mid\leq k\sigma\}=2\Phi(k)-1 P{Xμkσ}=2Φ(k)1
此概率值与 μ , σ \mu,\sigma μ,σ大小无关,只与 k k k的数值有关.

k k k P { ∣ X − μ ∣ ≤ k σ } P\{\mid X-\mu\mid\leq k\sigma\} P{Xμkσ}
10.6826
20.9544
30.9974

随机向量及其分布

二维随机变量

E E E是随机试验,样本空间为 Ω = { e } , \Omega=\{e\}, Ω={e} X = X ( e ) X=X(e) X=X(e) Y = Y ( e ) Y=Y(e) Y=Y(e)构成的一个向量$(X , Y) $叫做二维随机变量。

联合分布

二维随机变量的联合分布函数

( X , Y ) (X,Y) (X,Y) 是二维随机变量 , x , y ,x,y ,x,y是两个任意实数,则称定义在平面上的二元函数 P { X ≤ x , Y ≤ y } P\{X\leq x,Y\leq y\} P{Xx,Yy} ( X , Y ) (X,Y) (X,Y)的分布函数,或称为
X X X Y Y Y的联合分布函数,记作 F ( x , y ) , F(x,y), F(x,y),
F ( x , y ) = P { X ≤ x , Y ≤ y } . F(x,y)=P\{X\leq x,Y\leq y\}. F(x,y)=P{Xx,Yy}.

F ( x , y ) F(x,y) F(x,y)的性质

  1. 0 ≤ F ( x , y ) ≤ 1 , 0\leq F(x,y)\leq 1, 0F(x,y)1, F ( − ∞ , y ) = F ( x , − ∞ ) = F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=F(x,-\infty)=F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,y)=F(x,)=F(,)=0,F(+,+)=1

  2. F ( x , y ) F(x,y) F(x,y)是变量 x x x y y y的单调不减函数.

  3. ) F ( x , y ) = F ( x + 0 , y ) , F ( x , y ) = F ( x , y + 0 ) , F(x,y)=F(x+0,y),F(x,y)=F(x,y+0), F(x,y)=F(x+0,y),F(x,y)=F(x,y+0), F ( x , y ) F(x,y) F(x,y)关于 x x x y y y都是右连续的.

  4. 对任意 ( x 1 , y 1 ) , ( x 2 , y 2 ) , (x_1,y_1),(x_2,y_2), (x1,y1),(x2,y2), x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2时有
    P { x 1 < X ≤ x 2 , y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 1 , y 2 ) − F ( x 2 , y 1 ) + F ( x 1 , y 1 ) ≥ 0. P\{x_1<X\leq x_2,y_1<Y\leq y_2\}=F(x_2,y_2)-F(x_1,y_2)-F(x_2,y_1)+F(x_1,y_1)\geq0. P{x1<Xx2,y1<Yy2}=F(x2,y2)F(x1,y2)F(x2,y1)+F(x1,y1)0.

联合分布律

( X , Y ) (X,Y) (X,Y)所有可能取值为 ( x i , y j ) , i , j = 1 , 2 , ⋯   . (x_i,y_j),i,j=1,2,\cdots. (xi,yj),i,j=1,2,.则称 ( X , Y ) (X,Y) (X,Y) 是离散型的随机变量.

P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , ⋯ P\{X=x_i,Y=y_j\}=p_{ij},i,j=1,2,\cdots P{X=xi,Y=yj}=pij,i,j=1,2,为二维离散型随机变量 ( X , Y ) (X,Y) (X,Y) 的分布律,或随机变量 X X X Y Y Y的联合分布律.
也能用表格来表示 X X X Y Y Y的联合分布律, 如下表所示.

Y / X Y/ X Y/X x 1 x_1 x1 x 2 x_2 x2 ⋯ \cdots x i x_i xi ⋯ \cdots
y 1 y_1 y1 p 11 p_{11} p11 p 21 p_{21} p21 ⋯ \cdots p i 1 p_{i1} pi1 ⋯ \cdots
y 2 y_2 y2 p 12 p_{12} p12 p 22 p_{22} p22 ⋯ \cdots p i 2 p_{i2} pi2 ⋯ \cdots
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
y j y_j yj p 1 j p_{1j} p1j p 2 j p_{2j} p2j ⋯ \cdots p i j p_{ij} pij ⋯ \cdots
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots

这里 p i j p_{ij} pij具有下列性质:

  1. p i j ≥ 0 ( i , j = 1 , 2 , ⋯   ) ; p_{ij}\geq 0(i,j=1,2,\cdots); pij0(i,j=1,2,);

  2. ∑ i ∑ j p i j = 1. \sum_i\sum_jp_{ij}=1. ijpij=1.

    ( X , Y ) (X,Y) (X,Y)的联合分布函数为
    F ( x , y ) = ∑ x i ≤ x , y j ≤ y P { X = x i , Y = y j } . F(x,y)=\sum_{x_i\leq x,y_j\leq y}P\{X=x_i,Y=y_j\}. F(x,y)=xix,yjyP{X=xi,Y=yj}.

联合概率密度

若存在非负的函数 f ( x , y ) f(x,y) f(x,y)使对任意有分布函数 F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v , F(x,y)=\int_{-\infty}^{x}\int_{-\infty}^{y}f(u,v)dudv, F(x,y)=xyf(u,v)dudv,则称 ( X , Y ) (X,Y) (X,Y)是连续型随机变量. f ( x , y ) f(x,y) f(x,y)称为 ( X , Y ) (X,Y) (X,Y)的联合概率密度.

联合密度的性质

  1. f ( x , y ) ≥ 0. f(x,y)\geq0. f(x,y)0.

  2. ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d y d x = F ( + ∞ , + ∞ ) = 1. \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)dydx=F(+\infty,+\infty)=1. ++f(x,y)dydx=F(+,+)=1.

  3. f ( x , y ) f(x,y) f(x,y)在点 ( x , y ) (x,y) (x,y)处连续, 则 ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) . \frac{\partial^2F(x,y)}{\partial x\partial y}=f(x,y). xy2F(x,y)=f(x,y).

  4. G G G x O y xOy xOy平面上一个区域,则
    P { ( X , Y ) ∈ G } = ∬ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\iint_Gf(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy

常见的二维随机变量的分布

二维均匀分布

如果二维随机变量 ( X , Y ) (X,Y) (X,Y)有概率密度
f ( x , y ) = { 1 A , ( x , y ) ∈ G , 0 , 其 他 . f(x,y)= \begin{cases} \frac{1}{A},(x,y)\in G,\\ 0,其他. \end{cases} f(x,y)={A1,(x,y)G,0,.
其中 G G G为平面有界区域 , A ,A ,A为其面积,则称 ( X , Y ) (X,Y) (X,Y) G G G上服从二维均匀分布.

二维均匀分布的性质

在正矩形(矩形边与坐标轴平行)上,二维均匀分布的边缘分布是均匀分布,并且 X X X Y Y Y相互独立.

二维正态分布

如果二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 e x p { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } ( − ∞ < x , y < + ∞ ) , f(x,y)=\frac{1}{2\pi\sigma_1\sigma_2 \sqrt{1-\rho^2}}exp\{-\frac{1}{2(1-\rho^2)}[\frac{(x-\mu_1)^2}{\sigma_1^2}-2\rho\frac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}+\frac{(y-\mu_2)^2}{\sigma_2^2}]\}(-\infty<x,y<+\infty), f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}(<x,y<+),
其中 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_1,\mu_2,\sigma_1,\sigma_2,\rho μ1,μ2,σ1,σ2,ρ均为常数,且 σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1 , \sigma_1>0,\sigma_2>0,-1<\rho<1, σ1>0,σ2>0,1<ρ<1,则称 ( X , Y ) (X,Y) (X,Y)服从参数为 μ 1 , μ 2 , σ 1 , σ 2 , ρ \mu_1,\mu_2,\sigma_1,\sigma_2,\rho μ1,μ2,σ1,σ2,ρ的二维正态分布,记作
( X , Y ) ∼ N ( μ 1 , σ 1 2 ; μ 2 , σ 2 2 ; ρ ) . (X,Y)\sim N(\mu_1,\sigma_1^2;\mu_2,\sigma_2^2;\rho). (X,Y)N(μ1,σ12;μ2,σ22;ρ).
特别,当 μ 1 = μ 2 = 0 , σ 1 = σ 2 = 1 \mu_1=\mu_2=0,\sigma_1=\sigma_2=1 μ1=μ2=0,σ1=σ2=1时,则称 ( X , Y ) (X,Y) (X,Y)服从标准正态分布.

二维正态分布的性质

( X , Y ) ∼ N ( μ 1 , σ 1 2 ; μ 2 , σ 2 2 ; ρ ) ⇒ X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) (X,Y)\sim N(\mu_1,\sigma_1^2;\mu_2,\sigma_2^2;\rho)\Rightarrow X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) (X,Y)N(μ1,σ12;μ2,σ22;ρ)XN(μ1,σ12),YN(μ2,σ22)

逆命题不成立.

边缘分布

边缘分布函数:

关于 X X X有:

F X ( x ) = P { X ≤ x } = P { X ≤ x , Y < + ∞ } ; F_X(x)=P\{X\leq x\}=P\{X\leq x,Y<+\infty\}; FX(x)=P{Xx}=P{Xx,Y<+};

关于 Y Y Y

F Y ( y ) = P { Y ≤ y } = P { X < + ∞ , Y ≤ y } ; F_Y(y)=P\{Y\leq y\}=P\{X<+\infty,Y\leq y\}; FY(y)=P{Yy}=P{X<+,Yy};

由联合分布函数 F ( x , y ) F(x,y) F(x,y)求边缘分布函数,有
F X ( x ) = F ( x , + ∞ ) = lim ⁡ y → + ∞ F ( x , y ) , F Y ( y ) = F ( + ∞ , y ) = lim ⁡ x → + ∞ F ( x , y ) . F_X(x)=F(x,+\infty)=\lim _{y\to+\infty}F(x,y),F_Y(y)=F(+\infty,y)=\lim _{x\to+\infty}F(x,y). FX(x)=F(x,+)=y+limF(x,y),FY(y)=F(+,y)=x+limF(x,y).

离散型随机变量的边缘分布

边缘分布律

关于 X X X有:
P { X = x i } = ∑ j P { X = x i , Y = y j } = ∑ j p i j = p i } P\{X=x_i\}=\sum_jP\{X= x_i,Y=y_j\}=\sum_jp_ij=p_i\} P{X=xi}=jP{X=xi,Y=yj}=jpij=pi}
关于 Y Y Y
P { Y = y j } = ∑ i P { X = x i , Y = y j } = ∑ i p i j = p j } P\{Y= y_j\}=\sum_iP\{X= x_i,Y=y_j\}=\sum_ip_ij=p_j\} P{Y=yj}=iP{X=xi,Y=yj}=ipij=pj}

边缘分布函数

关于 X X X有:
F X ( x ) = ∑ x i ≤ x p i . F_X(x)=\sum_{x_i\leq x}p_i. FX(x)=xixpi.
关于 Y Y Y有:
F Y ( y ) = ∑ y i ≤ y p j . F_Y(y)=\sum_{y_i\leq y}p_j. FY(y)=yiypj.

连续型随机变量的边缘分布

f ( x , y ) f(x,y) f(x,y)为联合密度函数 .

边缘密度函数

关于 X X X有:
f X ( x ) = ∫ − ∞ + ∞ f ( x , y ) d y , f_X(x)=\int_{-\infty}^{+\infty}f(x,y)dy, fX(x)=+f(x,y)dy,
关于 Y Y Y有:
f Y ( y ) = ∫ − ∞ + ∞ f ( x , y ) d x . f_Y(y)=\int_{-\infty}^{+\infty}f(x,y)dx. fY(y)=+f(x,y)dx.

边缘分布函数

关于 X X X有:
F X ( x ) = ∫ − ∞ x f X ( x ) d x = ∫ − ∞ x ∫ − ∞ + ∞ f ( x , y ) d y d x , F_X(x)=\int_{-\infty}^{x}f_X(x)dx=\int_{-\infty}^{x}\int_{-\infty}^{+\infty}f(x,y)dydx, FX(x)=xfX(x)dx=x+f(x,y)dydx,
关于 Y Y Y有:
F Y ( y ) = ∫ − ∞ y f Y ( y ) d x = ∫ − ∞ y ∫ − ∞ + ∞ f ( x , y ) d x d y . F_Y(y)=\int_{-\infty}^{y}f_Y(y)dx=\int_{-\infty}^{y}\int_{-\infty}^{+\infty}f(x,y)dxdy. FY(y)=yfY(y)dx=y+f(x,y)dxdy.

条件分布

离散型随机变量的条件分布律

( X , Y ) (X,Y) (X,Y)是二维离散型随机变量, 对于固定的 j , j, j, P { Y = y j } > 0 , P\{Y=y_j\}>0, P{Y=yj}>0,则称
p X ∣ Y ( i ∣ j ) = P { X = x i ∣ Y = y j } = p i j p j ( i = 1 , 2 , ⋯   ) p_{X\mid Y}(i\mid j)=P\{X=x_i\mid Y=y_j\}=\frac {p_{ij}}{p_j}(i=1,2,\cdots) pXY(ij)=P{X=xiY=yj}=pjpij(i=1,2,)
为在 { Y = y j } \{Y=y_j\} {Y=yj}条件下随机变量 X X X的条件分布律.

同样, 对于固定的 i , i, i, P { X = x i } > 0 , P\{X=x_i\}>0, P{X=xi}>0,则称
p Y ∣ X ( j ∣ i ) = P { Y = y j ∣ X = x i } = p i j p i ( j = 1 , 2 , ⋯   ) p_{Y\mid X}(j\mid i)=P\{Y=y_j\mid X=x_i \}=\frac {p_{ij}}{p_i}(j=1,2,\cdots) pYX(ji)=P{Y=yjX=xi}=pipij(j=1,2,)
为在 { X = x i } \{X=x_i\} {X=xi}条件下随机变量 Y Y Y的条件分布律.

连续型随机变量的条件概率密度

( X , Y ) (X,Y) (X,Y)是二维连续型随机变量,若 f Y ( y ) > 0 , f_Y(y)>0, fY(y)>0,则称
p X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) ( − ∞ < x < + ∞ ) p_{X\mid Y}(x\mid y)=\frac {f(x,y)}{f_Y(y)}(-\infty<x<+\infty) pXY(xy)=fY(y)f(x,y)(<x<+)
为在 { Y = y } \{Y=y\} {Y=y}条件下随机变量 X X X的条件概率密度.

f X ( x ) > 0 , f_X(x)>0, fX(x)>0,则称
p Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) ( − ∞ < y < + ∞ ) p_{Y\mid X}(y\mid x)=\frac {f(x,y)}{f_X(x)}(-\infty<y<+\infty) pYX(yx)=fX(x)f(x,y)(<y<+)
为在 { X = x } \{X=x\} {X=x}条件下随机变量 Y Y Y的条件概率密度.

随机变量的独立性

二维随机变量的独立性

若对任何都有 P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } , P\{X\leq x,Y\leq y\} = P\{X\leq x\}P\{Y\leq y\}, P{Xx,Yy}=P{Xx}P{Yy}, F ( x , y ) = F X ( x ) F Y ( y ) , F( x , y ) = F_X( x )F_Y ( y ) , F(x,y)=FX(x)FY(y),则称随机变量 X X X Y Y Y是相互独立的.

独立性的判断方法 :
(1) 用分布函数:

X , Y X,Y X,Y相互独立的充分必要条件是在任何点 ( x , y ) (x,y ) (x,y)都有 F ( x , y ) = F X ( x ) F Y ( y ) ; F( x , y ) = F_X( x )F_Y ( y ) ; F(x,y)=FX(x)FY(y);
(2) 对离散型随机变量:

X , Y X,Y X,Y相互独立的充分必要条件是对所有的 i , j , i,j, i,j,都有 P { X = x i , Y = y j } = P { X = x i } P { Y = y j } ; P\{X=x_i,Y=y_j\}=P\{X=x_i\}P\{Y=y_j\}; P{X=xi,Y=yj}=P{X=xi}P{Y=yj};
(3) 对连续型随机变量:

X , Y X,Y X,Y 相互独立的充分必要条件是对任何点 ( x , y ) (x,y) (x,y)都有 f ( x , y ) = f X ( x ) f Y ( y ) . f ( x , y ) = f_X( x ) f_Y ( y ) . f(x,y)=fX(x)fY(y).

多维随机变量的分布

联合分布函数为
F ( x 1 , x 2 , ⋯   , x n ) = P { X 1 ≤ x 1 , X 2 ≤ x 2 , ⋯   , X n ≤ x n } . F(x_1,x_2,\cdots,x_n)=P\{X_1\leq x_1,X_2\leq x_2,\cdots,X_n\leq x_n\}. F(x1,x2,,xn)=P{X1x1,X2x2,,Xnxn}.
边缘分布函数为
F X i ( x i ) = P { X i ≤ x i } = F ( + ∞ , + ∞ , ⋯   , x i , ⋯   , + ∞ , + ∞ ) , ( i = 1 , 2 , ⋯   , n ) . F_{X_i}(x_i)=P\{X_i\leq x_i\}=F(+\infty,+\infty,\cdots,x_i,\cdots,+\infty,+\infty),(i=1,2,\cdots,n). FXi(xi)=P{Xixi}=F(+,+,,xi,,+,+),(i=1,2,,n).

多维随机变量的独立性

若对所有 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn都有
P { X 1 ≤ x 1 , X 2 ≤ x 2 , ⋯   , X n ≤ x n } = P { X 1 ≤ x 1 } ⋯ P { X n ≤ x n } , P\{X_1\leq x_1,X_2\leq x_2,\cdots,X_n\leq x_n\}=P\{X_1\leq x_1\}\cdots P\{X_n\leq x_n\}, P{X1x1,X2x2,,Xnxn}=P{X1x1}P{Xnxn},
则称 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn是相互独立的.

X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立的判断条件:

  1. X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立的充分必要条件是

    F ( x 1 , x 2 , ⋯   , x n ) = F ( x 1 ) F ( x 2 ) ⋯ F ( x n ) . F(x_1,x_2,\cdots,x_n)=F(x_1)F(x_2)\cdots F(x_n). F(x1,x2,,xn)=F(x1)F(x2)F(xn).

  2. 对离散型随机变量: X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立的充分必要条件是

    P { X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n } = P { X 1 = x 1 } ⋯ P { X n = x n } P\{X_1=x_1,X_2=x_2,\cdots,X_n=x_n\}=P\{X_1=x_1\}\cdots P\{X_n=x_n\} P{X1=x1,X2=x2,,Xn=xn}=P{X1=x1}P{Xn=xn}

  3. 对连续型随机变量: X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn相互独立的充分必要条件是

    f ( x 1 , x 2 , ⋯   , x n ) = f X 1 ( x 1 ) f X 2 ( x 2 ) ⋅ f X n ( x n ) . f(x_1,x_2,\cdots,x_n)=f_{X_1}(x_1)f_{X_2}(x_2)\cdot f_{X_n}(x_n). f(x1,x2,,xn)=fX1(x1)fX2(x2)fXn(xn).

随机变量的函数的分布

这里要解决的问题是: 已知随机变量 X X X的分布 , Y = g ( X ) , g ,Y=g(X),g ,Y=g(X),g是连续函数,求随机变量 Y Y Y的分布.

离散型随机变量函数的分布

设随机变量 X 的 分布律为 P { X = x k } = p k , k = 1 , 2 , ⋯   , P\{X=x_k\}=p_k,k=1,2,\cdots, P{X=xk}=pk,k=1,2,, 则当 Y = g ( X ) Y=g(X) Y=g(X)的所有取值为: y j ( j = 1 , 2 , ⋯   ) y_j(j=1,2,\cdots) yj(j=1,2,)时, 随机变量 Y Y Y有分布律
P { Y = y j } = ∑ g ( x i ) = y j P { X = x i } . P\{Y=y_j\}=\sum_{g(x_i)=y_j}P\{X=x_i\}. P{Y=yj}=g(xi)=yjP{X=xi}.

连续型随机变量函数的分布

分布函数法

设随机 X X X的慨率密度函数为 f X ( x ) ( − ∞ < x < + ∞ ) , f_X(x)(-\infty<x<+\infty), fX(x)(<x<+),那么 Y = g ( X ) Y=g(X) Y=g(X)的分布函数为
F Y ( y ) = P { Y ≤ y } = P { g ( X ) ≤ y } = ∫ g ( x ) ≤ y f X ( x ) d x , F_Y(y)=P\{Y\leq y\}=P\{g(X)\leq y\}=\int_{g(x)\leq y}{f_X(x)dx}, FY(y)=P{Yy}=P{g(X)y}=g(x)yfX(x)dx,
其概率密度为 f Y ( y ) = F Y ′ ( y ) . f_Y(y)=F'_Y(y). fY(y)=FY(y).

公式法

设随机变量 X X X具有概率密度函数 f X ( x ) ( − ∞ < x < + ∞ ) , g ( x ) f_X(x)(-\infty<x<+\infty),g(x) fX(x)(<x<+),g(x) ( − ∞ < x < + ∞ ) (-\infty<x<+\infty) (<x<+)内的严格单调的可导函数,则随机变量 Y = g ( X ) Y=g(X) Y=g(X)的概率密度为
f Y ( y ) = { f X [ h ( y ) ] ∣ h ′ ( y ) ∣ , α < y < β 0 , 其 他 . f_Y(y)= \begin{cases} f_X[h(y)]\mid h'(y)\mid,\alpha<y<\beta\\ 0,其他.\\ \end{cases} fY(y)={fX[h(y)]h(y),α<y<β0,.
其中 h ( y ) h(y) h(y) g ( x ) g(x) g(x)的反函数,
α = m i n { g ( − ∞ ) , g ( + ∞ ) } , β = m a x { g ( − ∞ ) , g ( + ∞ ) } \alpha=min\{g(-\infty),g(+\infty)\},\\ \beta=max\{g(-\infty),g(+\infty)\} α=min{g(),g(+)},β=max{g(),g(+)}
其分布函数为 F Y ( y ) = ∫ − ∞ y f Y ( t ) d t . F_Y(y)=\int^{y}_{-\infty}{f_Y(t)dt}. FY(y)=yfY(t)dt.

两个随机变量的函数的分布

( X , Y ) (X,Y) (X,Y)为二维随机变量, z = g ( x , y ) z=g(x,y) z=g(x,y)为连续函数,则称 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)为二维随机变量 ( X , Y ) (X,Y) (X,Y)的函数.

显然 Z Z Z为一维随机变量,其分布函数为 F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } F_{Z}(z)=P\{Z\leq z\}=P\{g(X,Y)\leq z\} FZ(z)=P{Zz}=P{g(X,Y)z}
( X , Y ) (X,Y) (X,Y)为二维连续型随机变量,设其分布密度为 f ( x , y ) f(x,y) f(x,y) Z Z Z的分布函数可表示为

F Z ( z ) = P { Z ≤ z } = ∬ g ( x , y ) ≤ z f ( x , y ) d x d y , F_{Z}(z)=P\{Z\leq z\}=\iint_{g(x,y)\leq z}f(x,y)dxdy, FZ(z)=P{Zz}=g(x,y)zf(x,y)dxdy,
由此得 Z Z Z的分布密度为
f Z ( z ) = d F Z ( z ) d z = d d z ∬ g ( x , y ) ≤ z f ( x , y ) d x d y . f_Z(z)=\frac{dF_Z(z)}{dz}=\frac{d}{dz}\iint_{g(x,y)\leq z}f(x,y)dxdy. fZ(z)=dzdFZ(z)=dzdg(x,y)zf(x,y)dxdy.

Z = X + Y Z=X+Y Z=X+Y的分布

根据定义计算

F Z ( z ) = P { Z ≤ z } = P { X + Y ≤ z } F_{Z}(z)=P\{Z\leq z\}=P\{X+Y\leq z\} FZ(z)=P{Zz}=P{X+Yz}

分三种情况计算
  1. X , Y X,Y X,Y是离散型:直接计算 Z 的分布律;

  2. X , Y X,Y X,Y是连续型:利用定义计算 Z 的分布函数和分布密度,或根据 f Z ( z ) f_Z(z) fZ(z)作一重积分计算:
    f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x . f_Z(z)=\int_{-\infty}^{+\infty}{f(x,z-x)dx}. fZ(z)=+f(x,zx)dx.
    特别, 当 X X X Y Y Y相互独立时,
    f Z ( z ) = f X ∗ f Y = ∫ − ∞ + ∞ f X ( x ) ⋅ f Y ( z − x ) d x = ∫ − ∞ + ∞ f X ( z − y ) ⋅ f Y ( y ) d x ( 卷 积 公 式 ) . f_Z(z)=f_X*f_Y=\int_{-\infty}^{+\infty}{f_X(x)·f_Y(z-x)dx}=\int_{-\infty}^{+\infty}{f_X(z-y)·f_Y(y)dx}(卷积公式). fZ(z)=fXfY=+fX(x)fY(zx)dx=+fX(zy)fY(y)dx().

  3. X 是离散型, Y 是连续型:使用全概率公式.

关于正态分布的结论

两个独立的正态分布的仍为正态分布,即若 X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22) Z = X + Y ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) . Z=X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2). Z=X+YN(μ1+μ2,σ12+σ22).

典型例题

一维随机变量的分布函数

在这里插入图片描述
在这里插入图片描述

一维离散型随机变量的计算

二项分布与超几何分布

袋中装有6个大小相同的球,4个红色,2个白色.现从中连取5次,每次取一球,求取得红球的个数X的分布律:
(1)每次取出球观察颜色后,即放回袋中,拌匀后再取下一个球;
(2)每次取出球观察颜色后,不放回袋中,再取下一个球.

解:

(1) 随机变量X服从二项分布,则 X ∼ ( 5 , 2 3 ) X\sim (5,\frac{2}{3}) X(5,32)
P { X = k } = C 5 k ( 2 3 ) k ( 1 3 ) 5 − k , k = 0 , 1 , 2 , 3 , 4 , 5 , P\{X = k\}= C^k_5(\frac{2}{3})^k(\frac{1}{3})^{5-k} ,k = 0,1, 2,3,4,5, P{X=k}=C5k(32)k(31)5kk=0123,4,5,
因此X的分布律为

X X X012345
p k p_k pk 1 243 \frac{1}{243} 2431 10 243 \frac{10}{243} 24310 40 243 \frac{40}{243} 24340 80 243 \frac{80}{243} 24380 80 243 \frac{80}{243} 24380 32 243 \frac{32}{243} 24332

(2)随机变量 X X X服从超几何分布,故
P { X = k } = C 4 k ⋅ C 6 − 4 5 − k C 6 5 , k = 3 , 4 P\{X=k\}=\frac {C_4^k·C_{6-4}^{5-k}}{C _{6}^{5}},k=3,4 P{X=k}=C65C4kC645k,k=3,4
因此 X X X的分布律为

X X X34
p k p_k pk 2 3 \frac{2}{3} 32 1 3 \frac{1}{3} 31

几何分布

一房间有3扇同样大小的窗子,其中只有一扇是打开的,有一只鸟自开着的窗子飞入房间,它只能从开着的窗子飞出去。鸟在房子里飞来飞去,试图飞出房间。鸟飞向各扇窗子都是随机的。
(1)假定鸟是没有记忆的,以X表示鸟为了飞出房间试飞的次数,求X的分布律;
(2)户主称,他养的鸟是有记忆的,它飞向任一窗子的尝试不多于一次,以Y表示这只聪明的鸟为了飞出房间试飞的次数,如户主所说是确实的,试求Y的分布律.
解:

(1) X服从几何分布,每次只能从开着的窗子飞出去,飞出去的概率为 1 3 , \frac{1}{3}, 31因此 X X X的分布律为
P { X = k } = ( 2 3 ) k − 1 1 3 ( k = 1 , 2 , ⋯   ) . P \{ X = k \} = (\frac{2}{3})^{k-1}\frac{1}{3}(k = 1,2,\cdots). P{X=k}=(32)k131(k=1,2,).
(2)当鸟是有记忆的时,由题意,Y的可能取值为1,2.3.
Y=1,表明鸟从3扇窗子中选对了1扇,因对鸟面言.3扇窗是等可能的 , P { Y = 1 } = 1 3 ,P\{Y=1\}=\frac{1}{3} ,P{Y=1}=31
Y=2,表明鸟第1次试飞失败概率为 2 3 , \frac{2}{3}, 32,第二次,鸟舍弃已飞过的那扇窗,而从余下的一开一关两扇窗中选一,成功机会为 1 2 \frac{1}{2} 21,故 P { Y = 2 } = 2 3 × 1 2 = 1 3 P\{Y=2\}=\frac{2}{3}\times\frac{1}{2}=\frac{1}{3} P{Y=2}=32×21=31
Y=3,表明鸟第1次试飞失败概率为 2 3 , \frac{2}{3}, 32,第二次,鸟舍弃已飞过的那扇窗,而从余下的一开一关两扇窗中选一,失败机会为 1 2 \frac{1}{2} 21,第三次从剩下的唯开着的窗子飞出,成功的概率为1.故 P { Y = 3 } = 2 3 × 1 2 × 1 = 1 3 P\{Y=3\}=\frac{2}{3}\times\frac{1}{2}\times1=\frac{1}{3} P{Y=3}=32×21×1=31
因此Y的分布律为

Y123
p k p_k pk 1 3 \frac{1}{3} 31 1 3 \frac{1}{3} 31 1 3 \frac{1}{3} 31

泊松分布

由商店过去的销售记录知道,某商品每月的销售数可以用参数λ=10的泊松分布来描述,为了以95%以上的把握保证不脱销,问商店在上一个月底至少应进某种商品多少件?
解:

设该商店每月销售某种商品X件,X服从参数λ= 10的泊松分布,故

P { X = k } = 1 0 k e k k ! , k = 0 , 1 , 2 , ⋯   , P\{X=k\}=\frac {10 ^ke^k}{k!},k=0,1,2,\cdots, P{X=k}=k!10kek,k=0,1,2,,
设月底的进货为a件,则当 X ≤ a X\leq a Xa时就不会脱销,因而按题意要求为 P { X ≤ a } ≥ 0.95 , P\{X\leq a\}\geq 0.95, P{Xa}0.95,

∑ k = 0 a 1 0 k e − 10 k ! > 0.95 , \sum_{k=0}^{a}\frac {10 ^ke^{-10}}{k!}>0.95, k=0ak!10ke10>0.95,
由泊松分布表可得
∑ k = 0 14 1 0 k e − 10 k ! ≈ 0.9166 < 0.95 , ∑ k = 0 15 1 0 k e − 10 k ! ≈ 0.9513 > 0.95. \sum_{k=0}^{14}\frac {10 ^ke^{-10}}{k!}\approx 0.9166<0.95,\\ \sum_{k=0}^{15}\frac {10 ^ke^{-10}}{k!}\approx 0.9513>0.95. k=014k!10ke100.9166<0.95,k=015k!10ke100.9513>0.95.
于是,这家商店只要在月底进货某种商品15件(假定上个月没存货),就可以95%以上的把握保证这种商品在下个月内不脱销.

一维连续型随机变量的计算

均匀分布

设X在[2,5]上服从均匀分布,求X的取值小于3的概率。

总长度:3

小于3的长度:1

P ( X 的 取 值 小 于 3 ) P_{(X的取值小于3)} P(X3)= 1 3 \frac{1}{3} 31

指数分布

某种电子元件的使用寿命X (单位:小时)服从 λ = 1 / 2000 \lambda=1/2000 λ=1/2000的指数分布。
求:(1)一个元件能正常使用1000小时以上的概率;
(2)一个元件能正常使用1000小时到2000小时之间的概率。
在这里插入图片描述

正态分布

在这里插入图片描述

一维随机变量函数的分布

公式法

在这里插入图片描述

分布函数法

在这里插入图片描述
在这里插入图片描述

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页