面经题目总结
文章平均质量分 90
总结面经上的各种面试题目
xhsun1997
这个作者很懒,什么都没留下…
展开
-
总结面试中的一些问题(强化学习相关)
DQN 简述DQN的原理 DQN就是利用神经网络近似最优动作价值函数, DQN存在的问题原创 2021-03-16 20:47:48 · 674 阅读 · 1 评论 -
总结面试中的一些问题(深度学习相关)
Dropout Dropout原理 Dropout是指在训练神经网络的时候,每当传入一批数据时,对于某一层来说,会以一定的概率p随机丢弃一些神经元。 从而可以缓解过拟合的问题。那么为什么丢弃神经元可以缓解过拟合呢?可以从多个角度解释,但是本质都是正则化。 通过丢弃神经元,网络的参数会变少,通过减少网络参数可以缓解过拟合问题; 由于丢弃神经元的随机性,每当传入一批数据,整个网络的结构就会有少许变化,这个过程会减少全体神经元之间的联合适应性,而且测试阶段通过乘以对应的(1-p)可以达到集成所有模型的目的,从而原创 2021-02-24 21:05:51 · 243 阅读 · 0 评论 -
总结面试中的一些问题(机器学习相关)
逻辑回归 简述和推导LR 逻辑回归是一个判别模型(直接对P(y∣x;θ)P(y|x;\theta)P(y∣x;θ)建模)。LR的本质思想就是以对数似然函数为目标函数的最优化问题,优化方法通常采用梯度下降法。 逻辑回归就是在线性回归的基础上添加一个sigmoid激活函数将数据的线性组合后的值映射在(0,1)区间内,从而实现二分类任务。 我们知道sigmoid激活函数 σ(x)=11+e−x \sigma(x)=\frac{1}{1+e^{-x}} σ(x)=1+e−x1 设模型的参数是θ\thetaθ,那么原创 2021-02-23 21:19:46 · 174 阅读 · 0 评论