压缩感知(Compressive Sensing)

从数学上来说,CS就是在一定的条件下求解欠定(不适定)方程,条件包括x要是稀疏的,测量矩阵要满足RIP条件,那么欠定(不适定)方程就会以很大的概率有唯一解。
压缩感知是一种重建技术,它利用信号的稀疏性或压缩性,只需少量随机的测量就可重构出完整信号。如果信号是稀疏的,那么它可以由远低于采样定理要求的采样点重建恢复,打破了奈奎斯特采样定律的限制。

1、稀疏表示
假设信号x在某个基(字典)中具有稀疏表示,即x=\psis,s是稀疏的.    

“稀疏”表示s的大多数元素都是0或接近0,\psi可能是具有适当性质的矩阵,包括傅里叶基,小波基等。

2、测量过程
测量矩阵\phi,即y=\phix,通过矩阵\phi来获得x的测量y。

\phi\psi存在不相关性,因为如果一个信号在\psi下稀疏,\phi应该能保留这个信号的稀疏性。在实际中通常通过随机测量矩阵(随机测量矩阵是一个由随机元素构成的矩阵。这些元素通常是从一个已知的概率分布(如高斯分布、伯努利分布等)中抽取的)的使用来满足。因为随机测量矩阵通常与任何固定字典几乎不相关。 


\phi的行数M小于信号x的长度N。

\because x=\psis

\therefore y=\phi\psis

3、重建过程

从y直接解出s不可行,因为方程是欠定的。

\therefore引入优化过程来解决这个问题

原始优化问题:找到一个s,使得y=\phi\psis,并且s的L0范数(s中非零元素的个数)最小。

min\left \| s \right \|0     subject to y=\phi\psis

这是一个NP-hard问题(要检查其每一个子集,找到y=\phi\psis的子集,并且子集的大小最小,这是一个指数级计算量,对实际问题几乎不可能)
因此,转而寻找一个近似解,选择一个满足y=\phi\psis的s,并且使得s的L1范数(所有元素的绝对值之和)最小。

min\left \| s \right \|1     subject to y=\phi\psis

L1范数问题是一个凸优化问题,可以使用已有优化算法求解,在某些条件下(如RIP,Coherence Property)等,这个L1范数最小化问题可以找到与L0范数最小化问题相同的解,即原信号的正确稀疏表示。

  • 1
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

filter_hen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值