# HDU 5363 Key Set

## Problem Description

soda has a set S with n integers {1,2,…,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are key set.

## Input

There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating the number of test cases. For each test case:

The first line contains an integer n (1≤n≤109), the number of integers in the set.

## Output

For each test case, output the number of key sets modulo 1000000007.

4
1
2
3
4

0
1
3
7

## 普通函数

#include<iostream>

using namespace std;
#define mod 1000000007
typedef long long ll;

ll ppow(ll x, ll n)
{
ll result = 1;
for (;n; n >>= 1)
{
if (n & 1)
{
result *= x;
result %= mod;
}
x *= x;
x %= mod;
}
return result;
}

int main()
{
int t;
ll n, x;
scanf_s("%d", &t);
while (t--)
{
scanf_s("%lld", &n);
printf("%lld\n", ppow(2, n - 1) - 1);
}
return 0;
}


## 递归公式

#include<iostream>

using namespace std;
#define mod 1000000007
typedef long long ll;

ll powmod(ll x, ll n)
{
if (!n)
return 1;
if (n & 1)
return x * powmod(x * x % mod, n >> 1) % mod;
return powmod(x * x % mod, n >> 1) % mod;
}

int main()
{
int t;
ll n, x;
scanf_s("%d", &t);
while (t--)
{
scanf_s("%lld", &n);
printf("%lld\n", powmod(2, n - 1) - 1);
}
return 0;
}


## 快速幂公式

(1).x是奇数
xn =(x2%mod)n/2%mod;
（2）x是偶数
xn =((x2%mod)n/2*x)%mod;

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客