开篇口水话:
这篇博客是,完成一个课程选题项目:《好评/差评识别。》
采用朴素贝叶斯算法
从而要认真学习,贝叶斯算法,以及朴素贝叶斯算法
简单回顾概念:
1.分类的目的: 利用已有的观测数据,建立fen’lei’qi对象属于哪个预定义的目标类
2.分类预测输出: 离散值
3.分类的任务: 对Data Set进行学习并构造一个拥有预测功能的分类模型。用于预测未知样本的类标号,比如预测病人的病情为[‘癌症’,‘非癌症]。
4.贝叶斯分类方法:是一种基于统计的学习方法
几个术语的中英文:
-
分类(Classification)
-
朴素贝叶斯算法(Naive Bayes,NB)
-
贝叶斯定理(Bayes’ theorem)
贝叶斯定理
就是下面这个公式定理: