贝叶斯分类方法——初次见面

本文介绍了朴素贝叶斯分类方法,包括贝叶斯定理的概念、朴素贝叶斯算法的原理以及其在好评/差评识别项目中的应用。文章通过实例解释了如何利用该算法进行分类,并探讨了算法的优缺点。
摘要由CSDN通过智能技术生成

开篇口水话:
这篇博客是,完成一个课程选题项目:《好评/差评识别。》
采用朴素贝叶斯算法
从而要认真学习,贝叶斯算法,以及朴素贝叶斯算法


简单回顾概念:
1.分类的目的: 利用已有的观测数据,建立fen’lei’qi对象属于哪个预定义的目标类
2.分类预测输出: 离散值
3.分类的任务: 对Data Set进行学习并构造一个拥有预测功能的分类模型。用于预测未知样本的类标号,比如预测病人的病情为[‘癌症’,‘非癌症]。
4.贝叶斯分类方法:一种基于统计的学习方法

几个术语的中英文:

  • 分类(Classification)

  • 朴素贝叶斯算法(Naive Bayes,NB)

  • 贝叶斯定理(Bayes’ theorem)


贝叶斯定理

就是下面这个公式定理:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

adingable

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值