LeetCode 5 最长回文子串

LeetCode 5 最长回文子串


题目描述

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:
输入:s = “babad”
输出:“bab”
解释:“aba” 同样是符合题意的答案。

示例 2:
输入:s = “cbbd”
输出:“bb”

示例 3:
输入:s = “a”
输出:“a”

示例 4:
输入:s = “ac”
输出:“a”

提示:
1 <= s.length <= 1000
s 仅由数字和英文字母(大写和/或小写)组成

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-substring
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。


解题思路

用回溯查询两个相同字符,取出相同字符中间的字段,进行一一匹配

情况分析:

代码编写

如下:

class Solution {
    public boolean isPalindromic(String s) {
		for (int i = 0; i < s.length() / 2; i++) {
			if (s.charAt(i) != s.charAt(s.length() - 1 - i )) {
				return false;
			}
		}
		return true;
	}
    public String longestPalindrome(String s) {
        String ans = "";
        int max = 0;
        for (int i = 0; i < s.length(); i++)
            for (int j = i + 1; j <= s.length(); j++) {
                String s1 = s.substring(i, j);
                if (isPalindromic(s1) && s1.length() > max) {
                    ans = s.substring(i, j);
                    max = Math.max(max, ans.length());
            }
        }
        return ans;
    }
}

总结与分析

我的执行结果如下:
请添加图片描述
超时了

时间复杂度: O(s.length()*s.length())
空间复杂度: O(1)

回溯算法时间复杂度较高,遇到大量数据时计算起来较为复杂

参考答案:

public class Solution {

    public String longestPalindrome(String s) {
        int len = s.length();
        if (len < 2) {
            return s;
        }

        int maxLen = 1;
        int begin = 0;
        // dp[i][j] 表示 s[i..j] 是否是回文串
        boolean[][] dp = new boolean[len][len];
        // 初始化:所有长度为 1 的子串都是回文串
        for (int i = 0; i < len; i++) {
            dp[i][i] = true;
        }

        char[] charArray = s.toCharArray();
        // 递推开始
        // 先枚举子串长度
        for (int L = 2; L <= len; L++) {
            // 枚举左边界,左边界的上限设置可以宽松一些
            for (int i = 0; i < len; i++) {
                // 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得
                int j = L + i - 1;
                // 如果右边界越界,就可以退出当前循环
                if (j >= len) {
                    break;
                }

                if (charArray[i] != charArray[j]) {
                    dp[i][j] = false;
                } else {
                    if (j - i < 3) {
                        dp[i][j] = true;
                    } else {
                        dp[i][j] = dp[i + 1][j - 1];
                    }
                }

                // 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置
                if (dp[i][j] && j - i + 1 > maxLen) {
                    maxLen = j - i + 1;
                    begin = i;
                }
            }
        }
        return s.substring(begin, begin + maxLen);
    }
}

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/longest-palindromic-substring/solution/zui-chang-hui-wen-zi-chuan-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

参考答案的执行结果:
请添加图片描述

看来参考答案的复杂度也不是最优呀
我好菜,祝我明天写的不要超时,苏神保我!!!!!!
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值