Python 提取csv数据并筛选指定条件数据


前言

本文主要介绍通过Python提取csv文件中数据,并对数据进行处理。
编译器:Anaconda3 语言:Python3


提示:以下是本篇文章正文内容,本文仅为作者作为学习笔记使用,大佬勿喷

一、使用pandas和numpy库

通过pandas库可以从csv提取到数据,但是数据的格式是DateFrame 格式,因为我不懂怎么处理DateFrame 格式的数据,所以就使用numpy库,将提取的数据转化为数组格式,这样可以就可以通过对数组的处理方式处理csv文件的数据。写回csv文件的过程中,再转换为DateFrame即可。

二、使用步骤

1.引入库

代码如下(示例):

import pandas as pd
import numpy as np

2.读入数据

本文是通过路径读取的文件。如果想通过文件名读取,需要把文件放与程序放到同一个文件夹中
代码如下(示例):

file1=pd.read_csv(r'C:\Users\86150\Desktop\1_Part2 附加测试题\Part2 附加测试题\4. data\data【各省-竞品】.csv')

此时读出的数据是DateFrame格式,输出如下
在这里插入图片描述


3.转化格式

将DateFrame 格式的数据转化为数组

file1=np.array(file1)

此时得到输出如下
在这里插入图片描述

4.处理数据

我们将所有省份是‘黑龙江’的数据挑选出来,并放入新的数组中

data=[]
for item in file1:
    sh= item[0] 
    if "黑龙江" ==sh:
       # print(item)
        data.append(item) 

这样就把数据挑选出来并存放在data中
在这里插入图片描述

补充

表头提取

Data_PATH='/Users/aoyupang/Desktop/data_3.csv'
df = pd.read_csv(Data_PATH, encoding='utf-8')
df.columns #提取表头

按条件索引

city_list=df['OUTCITY'].value_counts().index
city_list #提取出‘OUTCITY’ 这一列的数据中的项

提取指定要求数据

按条件索引数据

总结

这是第一次写博客,有很多不足的地方,希望大家指出,比如:如何直接把cell插入而不是以图片的形式。本文只是作者学习笔记,因为对很多库函数不知道,迫不得已想出来的方法,希望有大佬可以多讲解一些Python处理数据的方法,万分感谢!!!
### Python 读取 CSV 文件失败的常见原因及解决方案 #### 处理空行问题 当使用 `pandas` 库读取 CSV 文件时,如果文件中含有空行,则可能会导致读取异常。为了跳过这些空行正常加载数据,可以在调用 `read_csv()` 方法时设置参 `skip_blank_lines=True`。 ```python import pandas as pd file_path = 'example.csv' df = pd.read_csv(file_path, skip_blank_lines=True) # 跳过空白行[^4] ``` #### 编码错误引发的乱码现象 对于包含中文字符或其他非ASCII编码的数据集,在尝试解析它们之前应当确认源文件的实际编码方式,通过指定合适的编码格式来防止现乱码情况。通常情况下,默认采用 UTF-8 编码即可满足需求;但如果遇到特殊情形下的 BOM 或 GBK 等编码形式,则需相应调整。 ```python with open('data_with_chinese.csv', mode='r', encoding='utf-8-sig') as f: reader = csv.reader(f) for row in reader: print(row) # 如果是GBK编码则改为如下代码: # with open('data_with_chinese.csv', mode='r', encoding='gbk') as f:[^2] ``` #### SyntaxError 错误处理 有时由于 CSV 文件本身存在语法结构上的缺陷(例如不匹配的引号),这可能导致程序抛 `SyntaxError` 异常。针对这种情况,建议先利用文本编辑器打开目标文档进行初步审查,确保其符合标准CSV格式的要求后再执行后续操作。另外一种方法是在调用函时增加额外选项以增强容错能力: ```python try: df = pd.read_csv(filename, error_bad_lines=False, warn_bad_lines=True) except Exception as e: print("Failed to read the file:", str(e)) finally: pass ``` 需要注意的是,从 Pandas 版本0.24.0 开始,`error_bad_lines` 和 `warn_bad_lines` 参已被弃用,应改用 `on_bad_lines='skip'` 来替代上述做法[^3]。 #### CParserError 的应对措施 在某些特定环境下,比如安装了多个版本的 Python 解释器或是 Anaconda 发生冲突的情况下,可能还会碰到由底层C库引起的解析错误——即所谓的 "CParserError" 。此时可以通过显式指明引擎名称为 `'python'` ,从而绕开默认使用的优化版编译器而启用纯Python实现的方式完成任务。 ```python df = pd.read_csv(filepath_or_buffer=file_name, engine='python')[^5] ```
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值