马尔科夫不等式和坎泰利不等式的证明

马尔科夫不等式(Markov’s inequality)
对于随机变量 X X X,有
P ( ∣ X ∣ ⩾ ε ) ⩽ E ∣ X ∣ k ε k , ε > 0 , k < ∞ P\left( \left| X \right|\geqslant \varepsilon \right) \leqslant \frac{E\left| X \right|^k}{\varepsilon ^k},\varepsilon >0,k<\infty P(Xε)εkEXk,ε>0,k<
证明:
P ( ∣ X ∣ ⩾ ε ) = ∫ ∣ x ∣ ⩾ ε f ( x ) d x ⩽ ∫ ∣ x ∣ ⩾ ε ∣ x ∣ k ε k f ( x ) d x ⩽ 1 ε k ∫ − ∞ + ∞ ∣ x ∣ k f ( x ) d x = E ∣ X ∣ k ε k P\left( \left| X \right|\geqslant \varepsilon \right) =\int_{\left| x \right|\geqslant \varepsilon}{f\left( x \right) dx}\leqslant \int_{\left| x \right|\geqslant \varepsilon}{\frac{\left| x \right|^k}{\varepsilon ^k}f\left( x \right) dx} \\ \leqslant \frac{1}{\varepsilon ^k}\int_{-\infty}^{+\infty}{\left| x \right|^kf\left( x \right) dx}=\frac{E\left| X \right|^k}{\varepsilon ^k} P(Xε)=xεf(x)dxxεεkxkf(x)dxεk1+xkf(x)dx=εkEXk
坎泰利不等式(Cantelli’s inequality)
对于随机变量 X X X( X > μ X>\mu X>μ),存在有限均值和方差,则有
P ( X − μ ⩾ ε ) ⩽ σ 2 σ 2 + ε 2 P\left( X-\mu \geqslant \varepsilon \right) \leqslant \frac{\sigma ^2}{\sigma ^2+\varepsilon ^2} P(Xμε)σ2+ε2σ2

证明:
利用马尔科夫不等式令 Y Y Y等于 X − μ X-\mu Xμ,则有 P ( Y ⩾ ε ) ⩽ E ( Y 2 ) ε 2 P\left( Y\geqslant \varepsilon \right) \leqslant \frac{E\left( Y^2 \right)}{\varepsilon ^2} P(Yε)ε2E(Y2) β > 0 \beta>0 β>0,有 P ( Y + β ⩾ ε + β ) ⩽ E ( Y + β ) 2 ( ε + β ) 2 P\left( Y+\beta \geqslant \varepsilon +\beta \right) \leqslant \frac{E\left( Y+\beta \right) ^2}{\left( \varepsilon +\beta \right) ^2} P(Y+βε+β)(ε+β)2E(Y+β)2 E ( Y + β ) 2 = E ( Y 2 + 2 Y β + β 2 ) = σ 2 + β 2 ( E Y = 0 ) E\left( Y+\beta \right) ^2=E\left( Y^2+2Y\beta +\beta ^2 \right) =\sigma ^2+\beta ^2\left( EY=0 \right) E(Y+β)2=E(Y2+2Yβ+β2)=σ2+β2(EY=0),所以 P ( Y + β ⩾ ε + β ) ⩽ σ 2 + β 2 ( ε + β ) 2 P\left( Y+\beta \geqslant \varepsilon +\beta \right) \leqslant \frac{\sigma ^2+\beta ^2}{\left( \varepsilon +\beta \right) ^2} P(Y+βε+β)(ε+β)2σ2+β2 g ( β ) = σ 2 + β 2 ( ε + β ) 2 g\left( \beta \right) =\frac{\sigma ^2+\beta ^2}{\left( \varepsilon +\beta \right) ^2} g(β)=(ε+β)2σ2+β2
g ′ ( β ) = 2 ( ε β − σ 2 ) ( ε + β ) 3 g\prime\left( \beta \right) =\frac{2\left( \varepsilon \beta -\sigma ^2 \right)}{\left( \varepsilon +\beta \right) ^3} g(β)=(ε+β)32(εβσ2)
β = σ 2 ε \beta =\frac{\sigma ^2}{\varepsilon} β=εσ2 g ( β ) g\left(\beta\right) g(β)有最小值,
g m i n ( β ) = g ( σ 2 ε ) = σ 2 + σ 4 ε 2 ( ε + σ 2 ε ) 2 = σ 2 ε 2 + σ 2 g_{min}\left( \beta \right) =g\left( \frac{\sigma ^2}{\varepsilon} \right) =\frac{\sigma ^2+\frac{\sigma ^4}{\varepsilon ^2}}{\left( \varepsilon +\frac{\sigma ^2}{\varepsilon} \right) ^2}=\frac{\sigma ^2}{\varepsilon ^2+\sigma ^2} gmin(β)=g(εσ2)=(ε+εσ2)2σ2+ε2σ4=ε2+σ2σ2
因此, P ( Y ⩾ ε ) ⩽ σ 2 σ 2 + ε 2 P\left( Y\geqslant \varepsilon \right) \leqslant \frac{\sigma ^2}{\sigma ^2+\varepsilon ^2} P(Yε)σ2+ε2σ2

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一丈鹿原

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值