Infinite Prefixes (CodeForces - 1295B)

直达车

You are given string ss of length nn consisting of 0-s and 1-s. You build an infinite string tt as a concatenation of an infinite number of strings ss, or t=ssss…t=ssss… For example, if s=s= 10010, then t=t= 100101001010010...

Calculate the number of prefixes of tt with balance equal to xx. The balance of some string qq is equal to cnt0,q−cnt1,qcnt0,q−cnt1,q, where cnt0,qcnt0,q is the number of occurrences of 0 in qq, and cnt1,qcnt1,q is the number of occurrences of 1 in qq. The number of such prefixes can be infinite; if it is so, you must say that.

A prefix is a string consisting of several first letters of a given string, without any reorders. An empty prefix is also a valid prefix. For example, the string "abcd" has 5 prefixes: empty string, "a", "ab", "abc" and "abcd".

Input

The first line contains the single integer TT (1≤T≤1001≤T≤100) — the number of test cases.

Next 2T2T lines contain descriptions of test cases — two lines per test case. The first line contains two integers nn and xx (1≤n≤1051≤n≤105, −109≤x≤109−109≤x≤109) — the length of string ss and the desired balance, respectively.

The second line contains the binary string ss (|s|=n|s|=n, si∈{0,1}si∈{0,1}).

It's guaranteed that the total sum of nn doesn't exceed 105105.

Output

Print TT integers — one per test case. For each test case print the number of prefixes or −1−1 if there is an infinite number of such prefixes.

Example

Input

4
6 10
010010
5 3
10101
1 0
0
2 0
01

Output

3
0
1
-1

Note

In the first test case, there are 3 good prefixes of tt: with length 2828, 3030 and 3232.

 

题意:(我发现阻碍我解题的第一块绊脚石居然是读题,英文题目理解真的超级费劲,我甚至用软件翻译以后都不能懂,看了很多大佬的博客最后才看懂)T组输入,字符串长度n、目标平衡值x和一个字符串s(由0和1构成)。用字符串s来构造一个新的字符串t,使得新字符串t中0的数量比1的数量多x。构造方法是复制字符串s和使用s的最前的连续片段。如s=10010,可以构造t = 4*s + (1001)= (10010)(10010)(10010)(10010)1001。字符串用括号标出是方便读者理解,实际上没有这些符号。求字符串s可以构造成多少种字符串t使得其平衡值(即0比1多多少)为x,若其种类无限则输出-1。

题解:先计算字符串s本身的平衡值a,a=0决定了s可能可以构造无限多的字符串t。以a是否等于0为依据进行分类后,分别遍历字符串s的每一位,求此时0比1多的数量b,判断k*a+b == x(即(x-b)% a == 0),符合时即可构造的字符串t。遍历完s后,符合条件的次数即可构造t的数量(若a为0,且遍历过程有符合条件的b,则可构造无限多的t,输出-1);若遍历完也没有符合条件的b则无法构造满足要求的t,输出0。

#include<iostream>
#include<algorithm>
using namespace std;

int t, n, x;
char s[100005];
int main(){
	scanf("%d", &t);
	while(t--){
		scanf("%d%d", &n, &x);
		scanf("%s", s);
		
		int a = 0;//统计s的平衡值
		for(int i=0; s[i]; i++)
			if(s[i] == '0')	a++;
			else		a--;
		if(a == 0){//a为0时可能造成t的无限可能 
			for(int i=0; s[i]; i++){
				if(s[i] == '0')	a++;
				else		a--;
				if(a == x)	break;
			}
			if(a == x)	printf("-1\n");
			else		printf("0\n");
		}else{
			int ans=0, b=0;
			for(int i=0; s[i]; i++){
				if((x-b)%a==0 && (x-b)/a>=0)	
					ans++;//前者等价于k*a+b==x,后者保证x-b和a同号 
				if(s[i] == '0')	b++;
				else		b--;
			}
			printf("%d\n", ans);
		}
	}
	return 0;
}

 

 
展开阅读全文
©️2020 CSDN 皮肤主题: 书香水墨 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值