点这里 |
---|
题意: 有n个队伍,每个队伍有一个队长和两个队员,每对必须选择队长或两个队员回家。还有m条限制条件a b,表示a和b两人不能同时留下或回家。
题解: 看似是每队三个人,但实际上还是2-SAT的问题,因为队里的两个队员必须是同时留下或同事回家,那么只要同等看待就可以了。我选择用tag[]
给所有人一个新的编号,让每个队里只有两种编号。
#include<bits/stdc++.h>
using namespace std;
const int N = 3e3 + 10;
int n, m, a, b, c;
int dfn, cnt, top;
int num[N], low[N];
int scc[N], sta[N];
int tag[N];
vector<int> G[N];
void dfs(int u){
sta[top++] = u;
num[u] = low[u] = ++dfn;
for(int i = 0; i < G[u].size(); i++){
int v = G[u][i];
if(!num[v]){
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!scc[v])
low[u] = min(low[u], num[v]);
}
if(low[u] == num[u]){
cnt++;
while(1){
int v = sta[--top];
scc[v] = cnt;
if(u == v) break;
}
}
}
void tarjan(){
dfn = cnt = top = 0;
for(int i = 0; i < N; i++) num[i] = low[i] = scc[i] = 0;
for(int i = 0; i < (n << 1); i++) if(!num[i]) dfs(i);
}
int main(){
while(~scanf("%d%d", &n, &m)){
for(int i = 0; i < N; i++) tag[i] = 0, G[i].clear();
for(int i = 0; i < n; i++){
scanf("%d%d%d", &a, &b, &c);
tag[a] = i << 1;
tag[b] = tag[c] = (i << 1) + 1;
}
while(m--){
scanf("%d%d", &a, &b);
a = tag[a], b = tag[b];
G[a].push_back(b ^ 1);
G[b].push_back(a ^ 1);
}
tarjan();
bool flag = false;
for(int i = 0; i < n; i++)
if(scc[i << 1] == scc[(i << 1) ^ 1])
flag = true, i = n;
if(flag) printf("no\n");
else printf("yes\n");
}
return 0;
}