求极限问题:x趋于0时的等价替换及其适用条件、洛必达法

文章讲述了等价无穷小的概念,列举了x趋于0时常见的等价替换实例,以及洛必达法则的定义和适用条件。重点强调了等价替换在乘除和部分加减关系中的应用,以及何时不能直接使用等价替换的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >




x趋于0时的等价替换及其适用条件


等价无穷小的定义
lim ⁡ β α = 1 \lim\dfrac{\beta}{\alpha}=1 limαβ=1,则 β \beta β α \alpha α 是等价无穷小的,记作 α ∼ β \alpha \sim \beta αβ. 即当两个函数相比取极限,如果极限值为1,则这两个函数是等价无穷小的。

常用的等价替换(x趋于0时)

  • sin ⁡ x ∼ x \sin x \sim x sinxx

  • arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx

  • tan ⁡ x ∼ x \tan x \sim x tanxx

  • arctan ⁡ x ∼ x \arctan x\sim x arctanxx

  • e x − 1 ∼ x e^x -1\sim x ex1x

  • ln ⁡ ( 1 + x ) ∼ x \ln(1+x) \sim x ln(1+x)x

  • a x − 1 ∼ x ln ⁡ a    ,       ( a > 0 , a ≠ 1. ) a^x-1\sim x\ln a\ \ ,\ \ \ \ \ (a>0, a \neq1.) ax1xlna  ,     (a>0,a=1.)

  • log ⁡ a ( 1 + x ) ∼ x ln ⁡ a    ,       ( a > 0 , a ≠ 1. ) \log_a(1+x)\sim\dfrac{x}{\ln a}\ \ ,\ \ \ \ \ (a>0, a \neq1.) loga(1+x)lnax  ,     (a>0,a=1.)

  • 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x \sim \dfrac{1}{2}x^2 1cosx21x2

  • ( 1 + x ) α − 1 ∼ α x (1+x)^\alpha -1\sim \alpha x (1+x)α1αx

  • ( 1 + β x ) α − 1 ∼ α β x (1+\beta x)^\alpha -1\sim \alpha\beta x (1+βx)α1αβx

  • 1 + x n − 1 ∼ 1 n x \sqrt[n]{1+x}-1\sim\dfrac{1}{n}x n1+x 1n1x

  • x − sin ⁡ x ∼ 1 6 x 3 x-\sin x\sim\dfrac{1}{6}x^3 xsinx61x3

  • arcsin ⁡ x − x ∼ 1 6 x 3 \arcsin x-x\sim\dfrac{1}{6}x^3 arcsinxx61x3

  • tan ⁡ x − x ∼ 1 3 x 3 \tan x -x\sim \dfrac{1}{3}x^3 tanxx31x3

  • x − arctan ⁡ x ∼ 1 3 x 3 x-\arctan x\sim\dfrac{1}{3}x^3 xarctanx31x3

  • x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 x-\ln(1+x) \sim \dfrac{1}{2}x^2 xln(1+x)21x2


  • 等价替换的本质是当x趋于某一点时,两个函数在该点处相切,即两函数在该点处斜率相同且只有该点处一个交点。 斜率相同,意味着两函数在该点处具有相同的增长率,在x的值无尽逼近于该点时,两函数值几乎相同,所以在求极限的时候可以用等价替换,来简化问题。从斜率(函数变化率)的角度也更容易理解洛必达法则。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


洛必达法则:设
(1) 当 x → a x\rightarrow a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于 0;
(2) 在点 a a a 的某去心领域内, f ′ ( x ) f^{\prime}(x) f(x) F ′ ( x ) F^{\prime}(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F^{\prime}(x)\neq 0 F(x)=0

(3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\rightarrow a}\dfrac{f^{\prime}(x)}{F^{\prime}(x)} xalimF(x)f(x) 存在(或为 ∞ \infty

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x\rightarrow a}\dfrac{f(x)}{F(x)}=\lim\limits_{x\rightarrow a}\dfrac{f^{\prime}(x)}{F^{\prime}(x)} xalimF(x)f(x)=xalimF(x)f(x).

洛必达法则使用于以下类型的极限中:(未定式类型)

  • 0 0 \dfrac{0}{0} 00

  • ∞ ∞ \dfrac{\infty}{\infty}

  • 0 ⋅ ∞ 0\cdot\infty 0

  • 0 0 0^0 00

  • 1 ∞ 1^{\infty} 1

  • ∞ 0 \infty^0 0

  • ∞ − ∞ \infty-\infty .


等价替换适用的条件

在求极限问题中,不是所有的情况都是可以直接用等价替换的。

从等价无穷小的定义中 lim ⁡ β α = 1 \lim\dfrac{\beta}{\alpha}=1 limαβ=1 可以看出, α \alpha α β \beta β 的极限比值为1,所以在乘除关系中,可以使用等价无穷小进行替换。

等价替换适用于乘除关系中,部分加减关系中可以用等价无穷小替换。大致如下:

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,则 lim ⁡ α β = lim ⁡ α 1 β = lim ⁡ α β 1 = lim ⁡ α 1 β 1 . \lim\dfrac{\alpha}{\beta}=\lim\dfrac{\alpha_1}{\beta}=\lim\dfrac{\alpha}{\beta_1}=\lim\dfrac{\alpha_1}{\beta_1}. limβα=limβα1=limβ1α=limβ1α1.

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ 1 \lim\dfrac{\alpha_1}{\beta_1}=A\neq1 limβ1α1=A=1,则 α − β ∼ α 1 − β 1 \alpha-\beta\sim\alpha_1-\beta_1 αβα1β1.

  • α ∼ α 1 \alpha\sim\alpha_1 αα1 β ∼ β 1 \beta\sim\beta_1 ββ1,且 lim ⁡ α 1 β 1 = A ≠ − 1 \lim\dfrac{\alpha_1}{\beta_1}=A\neq-1 limβ1α1=A=1,则 α + β ∼ α 1 + β 1 \alpha+\beta\sim\alpha_1+\beta_1 α+βα1+β1.

简单地讲就是,若极限的分子分母中有加减关系,且等价替换后加减关系的结果为0,这时候一般不能用等价替换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码星人1024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值