连续自然数的任意次方求和公式推导




连续自然数求和:利用等差数列求和公式,首项加尾项乘以项数再除以2.
∑ i = 1 n i = 1 2 n ( n + 1 ) . \stackrel{n}{\sum\limits_{i=1}}i=\dfrac{1}{2}n(n+1). i=1ni=21n(n+1).

连续自然数的平方求和
∑ i = 1 n i 2 = 1 6 n ( n + 1 ) ( 2 n + 1 ) . \stackrel{n}{\sum\limits_{i=1}}i^2=\dfrac{1}{6}n(n+1)(2n+1). i=1ni2=61n(n+1)(2n+1).

推导方法:利用恒等式 ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3=n^3+3n^2+3n+1 (n+1)3=n3+3n2+3n+1 递推。

( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 (n+1)^3-n^3=3n^2+3n+1 (n+1)3n3=3n2+3n+1,再令 n = n − 1 n=n-1 n=n1 代入这个式子得:

n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 n3(n1)3=3(n1)2+3(n1)+1,然后不断令 n = n − 1 n=n-1 n=n1 带入这个新式子,最后会得到以下一系列式子:

{ ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 ( n − 1 ) 3 − ( n − 2 ) 3 = 3 ( n − 2 ) 2 + 3 ( n − 2 ) + 1 …   …   …   … …   …   …   … 3 3 − 2 3 = 3 × 2 2 + 3 × 2 + 1 2 3 − 1 3 = 3 × 1 2 + 3 × 1 + 1 \left\{\begin{aligned}(n+1)^3-n^3=3n^2+3n+1\\n^3-(n-1)^3=3(n-1)^2+3(n-1)+1\\(n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1\\\dots\ \dots\ \dots\ \dots\\\dots\ \dots\ \dots\ \dots\\3^3-2^3=3\times2^2+3\times2+1\\2^3-1^3=3\times1^2+3\times1+1\end{aligned}\right. (n+1)3n3=3n2+3n+1n3(n1)3=3(n1)2+3(n1)+1(n1)3(n2)3=3(n2)2+3(n2)+1      3323=3×22+3×2+12313=3×12+3×1+1

将以上 n n n 个等式等号两边分别相加,等号左边的式子会消去很多项,最后等号左边只剩下: ( n + 1 ) 3 − 1 3 (n+1)^3-1^3 (n+1)313 ,等号的右边相加后得到:

3 ( 1 2 + 2 3 + 3 2 + 4 2 + ⋯   ⋯ + n 2 ) + 3 ( 1 + 2 + 3 + 4 + ⋯   ⋯ + n ) + n 3(1^2+2^3+3^2+4^2+\cdots\ \cdots+n^2)+3(1+2+3+4+\cdots\ \cdots+n)+n 3(12+23+32+42+ +n2)+3(1+2+3+4+ +n)+n,于是有:

( n + 1 ) 3 − 1 3 = 3 ( 1 2 + 2 3 + ⋯ + n 2 ) + 3 ( 1 + 2 + ⋯ + n ) + n (n+1)^3-1^3=3(1^2+2^3+\cdots+n^2)+3(1+2+\cdots+n)+n (n+1)313=3(12+23++n2)+3(1+2++n)+n

( n + 1 ) 3 − 1 = 3 ( 1 2 + 2 3 + ⋯ + n 2 ) + 3 2 n ( n + 1 ) + n (n+1)^3-1=3(1^2+2^3+\cdots+n^2)+\dfrac{3}{2}n(n+1)+n (n+1)31=3(12+23++n2)+23n(n+1)+n

1 2 + 2 2 + ⋯ + n 2 = 1 3 [ n 3 + 3 n 2 + 2 n − 3 2 n ( n + 1 ) ] 1^2+2^2+\cdots+n^2=\dfrac{1}{3}[n^3+3n^2+2n-\dfrac{3}{2}n(n+1)] 12+22++n2=31[n3+3n2+2n23n(n+1)]

∑ i = 1 n i 2 = 1 3 ( n 3 + 3 2 n 2 + 1 2 n ) = 1 6 n ( 2 n 2 + 3 n + 1 ) = 1 6 n ( n + 1 ) ( 2 n + 1 ) . \stackrel{n}{\sum\limits_{i=1}}i^2=\dfrac{1}{3}(n^3+\dfrac{3}{2}n^2+\dfrac{1}{2}n)=\dfrac{1}{6}n(2n^2+3n+1)=\dfrac{1}{6}n(n+1)(2n+1). i=1ni2=31(n3+23n2+21n)=61n(2n2+3n+1)=61n(n+1)(2n+1).

利用以上 连续自然数的平方和 公式推导思路,也可以推导出连续 自然数的立方和 公式。

连续自然数的立方求和
∑ i = 1 n i 3 = [ n ( n + 1 ) 2 ] 2 \stackrel{n}{\sum\limits_{i=1}}i^3=\big[\dfrac{n(n+1)}{2}\big]^2 i=1ni3=[2n(n+1)]2.

推导过程:同样利用递推的思想。

利用公式: ( n + 1 ) 4 = n 4 + 4 n 3 + 6 n 2 + 4 n + 1. (n+1)^4=n^4+4n^3+6n^2+4n+1. (n+1)4=n4+4n3+6n2+4n+1. 利用 n = n − 1 n=n-1 n=n1 递推可得以下一系列式子:

{ ( n + 1 ) 4 − n 4 = 4 n 3 + 6 n 2 + 4 n + 1 n 4 − ( n − 1 ) 4 = 4 ( n − 1 ) 3 + 6 ( n − 1 ) 2 + 4 ( n − 1 ) + 1 ( n − 1 ) 4 − ( n − 2 ) 4 = 4 ( n − 2 ) 3 + 6 ( n − 2 ) 2 + 4 ( n − 2 ) + 1 ⋯   ⋯   ⋯   ⋯ ⋯   ⋯   ⋯   ⋯ 3 4 − 2 4 = 4 × 2 3 + 6 × 2 2 + 4 × 2 + 1 2 4 − 1 4 = 4 × 1 3 + 6 × 1 2 + 4 × 1 + 1 \left\{\begin{aligned}(n+1)^4-n^4=4n^3+6n^2+4n+1\\n^4-(n-1)^4=4(n-1)^3+6(n-1)^2+4(n-1)+1\\(n-1)^4-(n-2)^4=4(n-2)^3+6(n-2)^2+4(n-2)+1\\\cdots\ \cdots\ \cdots\ \cdots\\\cdots\ \cdots\ \cdots\ \cdots\\3^4-2^4=4\times2^3+6\times2^2+4\times2+1\\2^4-1^4=4\times1^3+6\times1^2+4\times1+1\end{aligned}\right. (n+1)4n4=4n3+6n2+4n+1n4(n1)4=4(n1)3+6(n1)2+4(n1)+1(n1)4(n2)4=4(n2)3+6(n2)2+4(n2)+1      3424=4×23+6×22+4×2+12414=4×13+6×12+4×1+1

将以上 n n n 个式子的等号两边分别相加得:

( n + 1 ) 4 − 1 = 4 ∑ i = 1 n i 3 + 6 ∑ i = 1 n i 2 + 4 ∑ i = 1 n i + n (n+1)^4-1=4\stackrel{n}{\sum\limits_{i=1}}i^3+6\stackrel{n}{\sum\limits_{i=1}}i^2+4\stackrel{n}{\sum\limits_{i=1}}i+n (n+1)41=4i=1ni3+6i=1ni2+4i=1ni+n

∑ i = 1 n i 3 = 1 4 [ ( n + 1 ) 4 − 1 − 6 ⋅ n ( n + 1 ) ( 2 n + 1 ) 6 − 4 ⋅ n ( n + 1 ) 2 − n ] \stackrel{n}{\sum\limits_{i=1}}i^3=\dfrac{1}{4}\Big[(n+1)^4-1-6\cdot\dfrac{n(n+1)(2n+1)}{6}-4\cdot\dfrac{n(n+1)}{2}-n\Big] i=1ni3=41[(n+1)4166n(n+1)(2n+1)42n(n+1)n]

最后化简可得: ∑ i = 1 n i 3 = 1 4 ( n 4 + 2 n 3 + n 2 ) = [ n ( n + 1 ) 2 ] 2 . \stackrel{n}{\sum\limits_{i=1}}i^3=\dfrac{1}{4}(n^4+2n^3+n^2)=\Big[\dfrac{n(n+1)}{2}\Big]^2. i=1ni3=41(n4+2n3+n2)=[2n(n+1)]2.

通过以上这种推导思路,就可以推导出连续自然数的任意次方的求和公式。




  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackey_Song_Odd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值