(Gauss-Jordan)高斯消元法求逆矩阵(含C/C++实现代码)

一、问题引出

给定一个 n × n n \times n n×n 的矩阵 A A A ,我们想求得一个矩阵 B B B 使得 ∣ A × B ∣ |A \times B| A×B A A A 矩阵和 B B B 矩阵的积矩阵的行列式为 1 1 1 ,那么这个 B B B 矩阵就是 A A A 矩阵的逆矩阵,或者说 A × B A \times B A×B 得到单位矩阵 E E E

二、原理

2.1 矩阵求逆原理

  • 我们先构造出一个 n × 2 n n\times 2n n×2n 的增广矩阵 ( A , I n ) (A,I_n) (A,In)
  • 然后用高斯消元法将这个增广矩阵化为最简形式 ( I n , A − 1 ) (I_n,A^{-1}) (In,A1) ,此时的增广部分就是 A A A 矩阵的逆矩阵,如果最后简化的左半部分矩阵不是单位矩阵那么说明矩阵 A A A 不可逆

2.2 矩阵消元原理

  • 对于一个矩阵 A A A ,我们从第 1 1 1 行到第 n n n 行不断选取第 i i i 列不为 0 0 0 的行,然后做一个行变换(交换两行,使得当前的第 i i i 行的第 i i i 列不为0)
  • 然后将当前的第 i i i 行做一个初等变换,也就是都除以 A [ i ] [ i ] A[i][i] A[i][i] 这样的话就能让第 i i i 行第 i i i 列变为 1 1 1
  • 将第 i i i 行下面的所有行的第 i i i 列全部消掉,此时就构成了一个上三角矩阵
  • 此时已经构成了一个阶梯型矩阵,我们再从下往上不断将上半矩阵同理消掉即可

三、举例

我们要求的 A A A 矩阵如下:
[ 2   1   1 3   2   1 2   1   2 ] \begin{bmatrix} 2 \ 1 \ 1 \\ 3 \ 2 \ 1 \\ 2 \ 1 \ 2 \\ \end{bmatrix} 2 1 13 2 12 1 2

  1. 我们构造出增广矩阵:

[ 2   1   1   1   0   0 3   2   1   0   1   0 2   1   2   0   0   1 ] \begin{bmatrix} 2 \ 1 \ 1 \ 1 \ 0 \ 0 \\ 3 \ 2 \ 1 \ 0 \ 1 \ 0\\ 2 \ 1 \ 2 \ 0 \ 0 \ 1 \\ \end{bmatrix} 2 1 1 1 0 03 2 1 0 1 02 1 2 0 0 1

  1. 开始行变换,消除下三角

[ 1    1 / 2    1 / 2   1 / 2   0   0 0   1     − 1   − 3     2    0 0    0      1   − 1      0    1 ] \begin{bmatrix} 1 \ \ 1/2 \ \ 1/2 \ 1/2 \ 0 \ 0 \\ 0 \ 1 \ \ \ -1 \ -3 \ \ \ 2 \ \ 0\\ 0 \ \ 0 \ \ \ \ 1 \ -1 \ \ \ \ 0 \ \ 1 \\ \end{bmatrix} 1  1/2  1/2 1/2 0 00 1   1 3   2  00  0    1 1    0  1
3. 从下往上消除上三角形

[ 1   0    0   3   − 1   − 1 0   1   0   − 4   2   1 0   0   1   − 1   0   1 ] \begin{bmatrix} 1 \ 0 \ \ 0 \ 3 \ -1 \ -1 \\ 0 \ 1 \ 0 \ -4 \ 2 \ 1\\ 0 \ 0 \ 1 \ -1 \ 0 \ 1 \\ \end{bmatrix} 1 0  0 3 1 10 1 0 4 2 10 0 1 1 0 1

四、题目链接

https://www.luogu.com.cn/problem/P4783

在这里插入图片描述

五、代码实现

5.1 整数逆元逆矩阵

对于这个整数逆元逆矩阵,需要注意的一点是模数最好选择一个质数,否则很容易存在逆元不存在的情况,导致求解出来的逆矩阵不正确

#include<bits/stdc++.h>
#define re register
#define il inline
#define ll long long
using namespace std;

il ll read(){
    ll s=0,f=0;char c=getchar();
    while(c<'0'||c>'9') f=(c=='-'),c=getchar();
    while(c>='0'&&c<='9') s=(s<<3)+(s<<1)+(c^'0'),c=getchar();
    return f?-s:s;
}

const int N=405,mod=1e9+7;
int n;
ll a[N][N<<1];
il ll qpow(ll x,ll k){
	ll ans=1;
	while(k){
		if(k&1) ans=ans*x%mod;
		x=x*x%mod;
		k>>=1;
	}
	return ans%mod;
}

il void Gauss_j(){	
	for(re int i=1,r;i<=n;++i){
		r=i;
		for(re int j=i+1;j<=n;++j)
			if(a[j][i]>a[r][i]) r=j;
		if(r!=i) swap(a[i],a[r]);
		if(!a[i][i]){puts("No Solution");return;}
		
		int kk=qpow(a[i][i],mod-2);	//求逆元 
		for(re int k=1;k<=n;++k){
			if(k==i) continue;
			int p=a[k][i]*kk%mod;
			for(re int j=i;j<=(n<<1);++j) 
				a[k][j]=((a[k][j]-p*a[i][j])%mod+mod)%mod;
		} 
		
		for(re int j=1;j<=(n<<1);++j) a[i][j]=(a[i][j]*kk%mod);
		//更新当前行 如果放在最后要再求一次逆元,不如直接放在这里  
	}	
	
	for(re int i=1;i<=n;++i){
		for(re int j=n+1;j<(n<<1);++j) printf("%lld ",a[i][j]);
		printf("%lld\n",a[i][n<<1]);
	}
}
int main(){
	n=read();
	for(re int i=1;i<=n;++i)
		for(re int j=1;j<=n;++j)
			a[i][j]=read(),a[i][i+n]=1;
	
	Gauss_j();
    return 0;
}

5.2 浮点逆矩阵

对于浮点逆矩阵那么直接用高斯消元的方式做就好了

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 26
#define endl "\n"
#define PII pair<int,int>
#define INF 0x3f3f3f3f
#define EPS 0.00001

const int N = 1e2+10;
ll n;
double a[N][N],b[N][N];

void output(double a[N][N],double b[N][N]){
	//调试输出
	cout<<"调试输出:左边为A矩阵,右边为B矩阵"<<endl;
	for(int i = 1;i <= n; ++i) {
		for(int j = 1;j <= n; ++j) {
			cout<<a[i][j]<<"\t";
		}
		for(int j = 1;j <= n; ++j) {
			cout<<b[i][j]<<"\t\n"[j == n];
		}
	}
}


void guss(){
	for(ll i = 1;i <= n; ++i) {//枚举当前处理到第几列
		for(ll j = i;j <= n; ++j) {//找到一个第i列不为空的行
			if(fabs(a[i][i]) > EPS) {
				for(ll k = i;k <= n; ++k) //交换i,j行
					swap(a[i][k],a[j][k]);
				break;
			}
		}
		if(fabs(a[i][i]) < EPS) {
			cout<<"不存在逆矩阵"<<endl;
			return ;
		}
		//这里就是将第i行下面所有行的第i列清空,变成一个阶梯型的矩阵
		double aii_inv = 1.0/a[i][i];
		//将第i行都乘上a[i][i]的逆
		a[i][i] = 1.0;
		for(ll j = i + 1;j <= n ; ++j) {
			a[i][j] = a[i][j] * aii_inv;
		}
		for(ll j = 1;j <= n; ++j) {
			b[i][j] = b[i][j] * aii_inv;
		}
		//将第i行下面的所有第i列的元素值清空
		for(ll j = i + 1;j <= n; ++j) {
			for(ll k = i + 1;k <= n; ++k) {
				a[j][k] = a[j][k] - a[i][k] * a[j][i];
			}
			for(ll k = 1;k <= n; ++k) {
				b[j][k] = b[j][k] - b[i][k] * a[j][i];
			}
			a[j][i] = 0.0;
		}
	}
	output(a,b);
	//从下往上第推删除A矩阵第i列后的所有元素
	for(int i = n; i >= 1; -- i) {
		for(int j = i - 1;j >= 1; --j) {
			for(int k = 1;k <= n; ++k) {
				//处理的是第i行和第j行的数据
				b[j][k] = b[j][k] -  a[j][i] * b[i][k];
			}
			a[j][i] = 0.0;
		}
	}
	cout<<"A矩阵的逆矩阵:"<<endl;
	//到了这里说明A矩阵已经变为单位矩阵了,此时的B矩阵就是A矩阵的逆矩阵了
	for(int i = 1;i <= n; ++i) {
		for(int j = 1;j <= n; ++j) {
			cout<<b[i][j]<<"\t\n"[j == n];
		}
	}
	
}

int main()
{
	string s;
	cin>>n;
	for(int i = 1;i <= n; ++i) 
		for(int j = 1;j <= n; ++j) {
			cin>>a[i][j];
			b[i][j] = (i==j?1.0:0.0);
		}
	guss();
	return 0;
}
/*
A
3
2 1 1
3 2 1
2 1 2

逆矩阵:
3 -1 -1
-4 2 1
-1 0 1	
*/

六、拓展:逆矩阵求法

至于这一部分的资料,大家可以自行搜索噢

6.1 LU分解法

LU分解法其实是高斯消元法的一种变种算法。LU分解是将矩阵A分解为一个下三角矩阵与一个上三角矩阵的乘积。所谓的三角阵就是一半为零的矩阵。L是下三角矩阵(Lower TriangularMatrix),即主对角线以上的元素全部都是0的矩阵。U是上三角矩阵(Upper Triangular Matrix),即主对角线以下的元素全部都是0的矩阵。

A = L U A − 1 = U − 1 L − 1 A=LU \\ A^{-1}=U^{-1}L^{-1} A=LUA1=U1L1
然LU分解是高斯消元法的一种表现形式,但是相对于高斯消元法,LU分解更易于实现并行化。计算机基本用这种方法。比如求 50000 × 50000 50000\times 50000 50000×50000 的这种大型矩阵。

6.2 SVD分解法

SingularValue Decomposition分解法也叫做奇异值分解,也是线性代数中十分重要的矩阵分解法,同样的能用来求解矩阵的逆矩阵。不同于LU分解中将矩阵A分解为下三角矩阵L与上三角矩阵U的乘积,SVD分解将矩阵A分解为三个矩阵的乘积,分别为:正交矩阵U、对角矩阵W以及正交矩阵V的转置矩阵V.

A = U W V T A − 1 = V W − 1 U T A=UWV^T \\ A^{-1}=VW^{-1}U^T A=UWVTA1=VW1UT

6.3 QR分解法

QR分解同样将原始矩阵A分解为两个矩阵的乘积,不同的是这两个矩阵分别为正交矩阵Q和上三角矩阵R。

A = Q R A − 1 = R − 1 Q − 1 A=QR \\ A^{-1}=R^{-1}Q^{-1} A=QRA1=R1Q1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MangataTS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值