题目引入
推箱子 是一款风靡全球的益智小游戏,玩家需要将箱子推到仓库中的目标位置。
游戏地图用大小为 n * m 的网格 grid 表示,其中每个元素可以是墙、地板或者是箱子。
现在你将作为玩家参与游戏,按规则将箱子 ‘B’ 移动到目标位置 ‘T’ :
玩家用字符 ‘S’ 表示,只要他在地板上,就可以在网格中向上、下、左、右四个方向移动。
地板用字符 ‘.’ 表示,意味着可以自由行走。
墙用字符 ‘#’ 表示,意味着障碍物,不能通行。
箱子仅有一个,用字符 ‘B’ 表示。相应地,网格上有一个目标位置 ‘T’。
玩家需要站在箱子旁边,然后沿着箱子的方向进行移动,此时箱子会被移动到相邻的地板单元格。记作一次「推动」。
玩家无法越过箱子。
返回将箱子推到目标位置的最小推动次数,如果无法做到,请返回 -1。
这么熟悉的游戏有读题的必要吗?直接看图:
思路讲解
题目不难,静下心来。
试想一下,如果箱子可以自己移动(见鬼),这道题目你会做吗?
这不就变成了一个简单的BFS吗?之所以用BFS而不是DFS,是因为使用BFS(层次化版本)可以一层一层向外扩展,从而轻易得到“最短移动次数”。
再思考,如果加入“箱子需要人从背后推动”的条件,会带来什么不同呢?
箱子的移动受到了限制——只有人可以到达箱子的背后时,箱子才能在这个特定方向进行移动。至于“人是否可以到达箱子的背后”,这个子问题又可以用一次DFS来解决。
由此,我们得到了第一个重要的思路:
以箱子的视角进行BFS(主问题),以人的视角进行DFS(子问题),后者是前者得以进行的前提。
想象一下,此时箱子正位于一个狭窄的“通道”内,这种情况下,人究竟是站在箱子的那一侧就尤为重要。换句话讲,箱子虽然位于同一位置,但人的位置不同,箱子其实仍处于不同的状态(请仔细琢磨“状态”这个用词)。
由此,引出了第二个重要的思路:
箱子的状态包含两个信息,箱子的位置、箱子的来源(它刚刚是以什么样的方向被推来的)。
而我们为什么要纠结于箱子的状态?
因为箱子在BFS时需要设置visited数组来防止重复(实际上防止死循环),而是否发生重复的依据正是箱子的状态。从代码的角度看,我们熟悉的visited数组长这个样子:boolean[][],而现在它变成了这样:boolean[][][4],4是指方向信息。
细节补充
这部分内容是代码实现上的一些细枝末节,如果你差不多弄懂了上面的思路,完全可以直接跳过此部分去读代码。读完后再来回看这一部分。
细节1
Box类的from属性的含义是“由xxx动作得到”,而不是“由xxx方向得来”。举个例子,[2][3][2]的含义是箱子处于“位置是(2,3),由向左推得来”的状态。
细节2
我们以箱子的视角进行BFS,是不是说人的位置我们就不去跟踪了呢?不是。事实上,人的位置已经与箱子的状态绑定。接着上面的例子,[2][3][2]的含义是箱子处于“位置是(2,3),由向左推得来”的状态,那么对应的人的位置就是(2,2)。
细节3
如何计数走了几步?这就是BFS的经典模板之一,即不一个个出队,而是先记录此时队列中元素的个数(size),然后一次性出队这么多元素,从而得到层次遍历的效果。另外注意本题求的是推动箱子的次数,不是人走的步数。
细节4
人是不能走箱子所在的位置的,这点很容易被忽略。每次一个箱子出队,便立即将该箱子所在的位置置为’B’(不是’.‘的任意字符),处理完这个箱子后,在将该位置改回’.’。
代码实现
class Solution {
/**
*【BFS+DFS】
* 以箱子的视角进行BFS
* 以人的视角进行DFS
* 后者作为前者得以进行的前提
*/
public int minPushBox(char[][] grid) {
int m = grid.length;
int n = grid[0].length;
// 遍历一次,找出箱子起点/终点,人的初始位置
int startX = -1;
int startY = -1;
int targetX = -1;
int targetY = -1;
int personX = -1;
int personY = -1;
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (grid[i][j] == 'B') {
startX = i;
startY = j;
}
if (grid[i][j] == 'T') {
targetX = i;
targetY = j;
grid[i][j] = '.';
}
if (grid[i][j] == 'S') {
personX = i;
personY = j;
grid[i][j] = '.';
}
}
}
// 初始化队列,加入元素以启动BFS
boolean[][][] visited = new boolean[m][n][4];
Queue<Box> queue = new LinkedList<>();
for (int i = 0; i < 4; i++) {
int[] direction = directions[i];
if (personCanReach(grid, m, n, personX, personY, startX - direction[0], startY - direction[1], new boolean[m][n])) {
queue.add(new Box(startX, startY, i));
visited[startX][startY][i] = true;
}
}
// 以箱子的视角开始BFS
int step = 0;
while (!queue.isEmpty()) {
int size = queue.size();
while (size-- > 0) {
Box box = queue.poll();
grid[box.x][box.y] = 'B';
personX = box.x - directions[box.from][0];
personY = box.y - directions[box.from][1];
if (box.x == targetX && box.y == targetY) {
return step;
}
for (int i = 0; i < 4; i++) {
int[] direction = directions[i];
int nextX = box.x + direction[0];
int nextY = box.y + direction[1];
// 人是否能绕到箱子的后面?
if (!personCanReach(grid, m, n, personX, personY, box.x - direction[0], box.y - direction[1], new boolean[m][n])) {
continue;
}
// 箱子的下个位置是否合法?
if (!isValid(grid, m, n, nextX, nextY)) {
continue;
}
// 箱子的下一个状态是不是重复了?
if (visited[nextX][nextY][i]) {
continue;
}
queue.add(new Box(nextX, nextY, i));
visited[nextX][nextY][i] = true;
}
grid[box.x][box.y] = '.';
}
step++;
}
return -1;
}
// 其含义是从【上】【下】【左】【右】
private final static int[][] directions = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
// 静态内部类是个顶级类,可当成外部类来看
private static class Box {
int x;
int y;
int from;
public Box(int x, int y, int from) {
this.x = x;
this.y = y;
this.from = from;
}
}
// 人是否可以某一位置(startX, startY)到达另一位置(targetX, targetY)
private boolean personCanReach(char[][] grid, int m, int n, int startX, int startY, int targetX, int targetY, boolean[][] visited) {
if (startX == targetX && startY == targetY) {
return true;
}
visited[startX][startY] = true;
for (int[] direction : directions) {
int nextX = startX + direction[0];
int nextY = startY + direction[1];
if (isValid(grid, m, n, nextX, nextY) && !visited[nextX][nextY]) {
if (personCanReach(grid, m, n, nextX, nextY, targetX, targetY, visited)) {
return true;
}
}
}
return false;
}
// 某位置是否可以踏足
private boolean isValid(char[][] grid, int m, int n, int x, int y) {
return x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == '.';
}
}
E N D END END