三步教你加载神经网络预训练模型----通用型(pytorch)

客官别急,三步教你从容的加载预训练网络参数

1.拿到网络后先查看网络模型和预训练模型,2.将网络模型和预训练模型的键调整成一样,并加载, 3.将两者的参数都打印一下,看是否加载成功。(对应以下三点)

1. 查看网络参数

pretrained_dict1 = torch.load(model_path1, map_location='cpu')['state_dict']#预训练文件后缀是.tar
pretrained_dict2 = torch.load(model_path2)#预训练文件后缀是.pth
#1.查看预训练网络参数
for key ,value in pretrained_dict1.items():#pretrained_dict1,pretrained_dict2就是上面的东西
    count+=1
    print(key)
print(count)

#2.查看model的网络参数
for key ,value in model.state_dict.items()print(key,value)

2. 加载模型遇到的两大问题

1. 模型的键不匹配

以下两代码,解决了键不匹配问题,一个是删除键的某一部分,一是添加键的某一部分

例:
下面的错误是因为模型的model.state_dict().items()的键是conv1.weight,预训练的键是module.conv1.weight,导致不匹配。所以下面的代码是让module. 去掉
在这里插入图片描述

1.删除键的头部
pretrained_dict = {k.replace('module.', ''): v for k, v in pretrained_dict2.items()}

当然有时候自己model的键需要改进,如下

2.补齐键的头部
checkpoint={'module.'+k:v for k,v in pretrained_dict.items()}

2. 预训练模型和自己的model长度不一样

# 删除pretrained_dict.items()中model所没有的东西
    model_dict = model.state_dict()
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}  # 只保留预训练模型中,自己建的model有的参数
    model_dict.update(pretrained_dict)  # 将预训练的值,更新到自己模型的dict中
    model.load_state_dict(model_dict)  # model加载dict中的数据,更新网络的初始值

3. 通过查看加载参数,看是否加载成功

for value1 ,value2 in zip(checkpoint.items(), model.state_dict().items()):
    print(value1,value2)

如下所示,model的参数和预训练的参数是一样的
在这里插入图片描述

4. 案例

(这里处理的只是针对本人的model加载的情况,要想正确加载,还需遵守上面3步)

    def load_param(self, model_path):#这里的self就是model
        model_dict = self.state_dict()
        pretrained_dict = torch.load(model_path)#这里model_path的后缀是.pth可直接读取
        # pretrained_dict = {k.replace('module.', ''): v for k, v in
        #                    pretrained_dict.items()}  # 因为pretrained_dict得到module.conv1.weight,但是自己建的model无module,只是conv1.weight,所以改写下
        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}  # 只保留预训练模型中,自己建的model有的参数
        model_dict.update(pretrained_dict)  # 将预训练的值,更新到自己模型的dict中
        self.load_state_dict(model_dict)  # model加载dict中的数据,更新网络的初始值
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值