一、完美二叉树
又叫满二叉树,即除了最后一个层级的叶子节点外,其余每个结点都有两个子结点
二、完全二叉树
需要满足两个条件:
(1)除了最后一层外,其它各层的结点个数都达到最大个数
(2)最后一层的结点集中在左侧,且结点连续,只有右侧部分可以缺失结点
三、二叉树的存储
在使用二叉树存储数据时,我们有两种选择,一种是数组存储,另一种是链表存储。
(1)数组存储
使用数组进行存储时,为了分辨各个节点之间的关系,我们会将树补全成一棵满二叉树,但是会造成空间的浪费。
(2)链表存储
把每个节点包装成一个对象,通过left和right分别指向其左子节点和右子节点,避免了空间的浪费,又条例清晰。
四、什么是二叉查找树
又名二叉排序树、二叉搜索树。当二叉查找树不为空时必须满足以下三个条件:
(1)非空左子树的结点的 key 小于其根结点的 key
(2)非空右子树的结点的 key 大于其根结点的 key
(3)左子树和右子树本身也是个二叉查找树
五、树的遍历
(1)先序遍历
访问根结点 => 访问左子树 => 访问右子树。在访问左子树或右子树的时候,仍是按照这个规则继续访问。
(2)中序遍历
访问左子树 => 访问根结点 => 访问右子树。在访问左子树或右子树的时候,仍是按照这个规则继续访问。
(3)后续遍历
访问左子树 => 访问右子树 => 访问根结点 。在访问左子树或右子树的时候,仍是按照这个规则继续访问。
六、API设计
6.1 节点类
类名 | Node<Key,Value> |
---|---|
构造方法 | Node(Key key, Value value, Node left, Node right):创建Node对象 |
成员变量 | 1.public Node left:记录左子结点 2.public Node right:记录右子结点 3.public Key key:存储键 4.public Value value:存储值 |
6.2 二叉查找树类
类名 | BinaryTree<Key key,Value value> |
---|---|
构造方法 | BinaryTree():创建BinaryTree对象 |
成员变量 | 1.private Node root:记录根结点 2.private int N:记录树中元素的个数 |
成员方法 | 1. public void put(Key key,Value value):向树中插入一个键值对 2.public Value get(Key key):根据key,从树中找出对应的值 3.public void delete(Key key):根据key,删除树中对应的键值对 4.public int size():获取树中元素的个数 |
6.3 方法实现思路
6.3.1 增
1、如果当前树中没有任何一个节点,则直接把新节点当作根节点使用
2、如果当前树不为空,则从根节点开始:
2.1如果新节点的key小于当前节点的key,则继续找当前节点的左子节点。
2.2如果新节点的key大于当前节点的key,则继续找当前节点的右子节点。
2.3如果新节点的key等于当前节点的key,则树中已经存在这样的节点,替换该节点的value值即可。
6.3.2 查
从根节点开始:
1、如果要查询的key小于当前节点的key,则继续找当前节点的左子节点;
2、如果要查询的key大于当前节点的key,则继续找当前节点的右子节点;
3、如果要查询的key等于当前节点的key,则书中返回当前节点的value。
6.3.3 删(需要考虑删除后新的顺序)
1、找到被删除的节点;
2、找到被删除节点右子树中的最小节点minNode
3、删除右子树中的最小节点
4、让被删除节点的左子树称为最小节点minNode的左子树,让被删除节点的右子树称为最小节点minNode的右子树
5、让被删除节点的父节点指向最小节点minNode
七、代码实现
7.1 二叉查找树实现
/**
* 二叉查找树 -- 链表实现
* @date 2021/5/20 14:26
*/
public class BinaryTree<Key extends Comparable<Key>, Value> {
// 根节点
private Node root;
// 树中元素个数
private int N;
// 构造器
public BinaryTree() {}
// 增
public void put(Key key, Value value){
// 从根节点开始
root = put(root, key, value);
}
// 向指定的树x中添加key-value,并返回添加元素后的新树
private Node put(Node x, Key key, Value value){
if(x == null){
N++;
return new Node(key, value, null, null);
}
int cmp = key.compareTo((Key) x.key);
if(cmp > 0){
// 递归
x.right = put(x.right, key, value);
}else if(cmp < 0){
x.left = put(x.left, key, value);
}else {
x.value = value;
}
return x;
}
// 查
public Value get(Key key){
return get(root, key);
}
// 从指定的树x中,查找key对应的值
private Value get(Node x, Key key){
if(x == null){
return null;
}
int cmp = key.compareTo((Key) x.key);
if(cmp > 0){// 大于当前节点,找右边
// 递归
return get(x.right, key);
}else if(cmp < 0){
return get(x.left, key);
}else {
return (Value) x.value;
}
}
// 删
public void delete(Key key){
root = delete(root, key);
}
// 删除指定树x中的key对应的value,并返回删除后的新树
private Node delete(Node x, Key key){
if(x == null){
return null;
}
int cmp = key.compareTo((Key) x.key);
if(cmp > 0){
x.right = delete(x.right, key);
}else if(cmp < 0){
x.left = delete(x.left, key);
}else {
if(x.right == null){
return x.left; // ?不是返回新树么?
}
if (x.left == null){
return x.right;
}
Node minNode = x.right;
while (minNode.left != null){
minNode = minNode.left;
}
Node n = x.right;
while (n.left != null){
if (n.left.left == null){
n.left = null;
}else {
n = n.left;
}
}
minNode.left = x.left;
minNode.right = x.right;
x = minNode;
N--;
}
return x;
}
// 获取树中元素个数
public int size(){
return N;
}
}
7.2 二叉查找树其他便捷方法
7.2.1 查找最小的键
// 查找最小键
public Key min(){
return (Key) min(root).key;
}
private Node min(Node x){
if(x.left != null){
return min(x.left);
}else {
return x;
}
}
7.2.2 查找最大的键
// 查找最大键
public Key max(){
return (Key) max(root).key;
}
private Node max(Node x){
if(x.right != null){
return max(x.right);
}else {
return x;
}
}
7.3 二叉树的基础遍历
7.3.1 前序遍历
// 前序遍历
// 获取指定树的所有键,并放入keys队列中
private void preErgodic(Node x, Queue<Key> keys){
if(x==null){
return;
}
// 根 -- 把x节点的key放入到keys中
keys.enqueue((Key) x.key);
// 左子树 -- 递归遍历x节点的左子树
if (x.left != null){
preErgodic(x.left, keys);
}
// 右子树 -- 递归遍历x节点的右子树
if(x.right != null){
preErgodic(x.right, keys);
}
}
7.3.2 中序遍历
// 中序遍历
public Queue<Key> midErgodic(){
Queue<Key> keys = new Queue<>();
midErgodic(root, keys);
return keys;
}
private void midErgodic(Node x, Queue<Key> keys){
if (x==null){
return;
}
// 左子树 -- 递归遍历x节点的左子树
if (x.left!=null){
midErgodic(x.left, keys);
}
// 根 -- 把x节点的key放入到keys中
keys.enqueue((Key) x.key);
// 右子树 -- 递归遍历x节点的右子树
if (x.right != null){
midErgodic(x.right, keys);
}
}
7.3.3 后续遍历
// 后序遍历
public Queue<Key> afterErgodic(){
Queue<Key> keys = new Queue<>();
afterErgodic(root, keys);
return keys;
}
private void afterErgodic(Node x, Queue<Key> keys){
if (x == null){
return;
}
// 左子树 -- 递归遍历x节点的左子树
if (x.left != null){
afterErgodic(x.left, keys);
}
// 右子树 -- 递归遍历x节点的右子树
if (x.right != null){
afterErgodic(x.right, keys);
}
// 根 -- 把x节点的key放入到keys中
keys.enqueue((Key) x.key);
}
7.4 二叉树的层序遍历
// 层序遍历 -- 从上向下,从左往右
public Queue<Key> layerErgodic(){
// 创建队列 -- 存储节点的key
Queue<Key> keys = new Queue<>();
Queue<Node> nodes = new Queue<>(); //辅助队列
// (1)根节点进入队列
nodes.enqueue(root);
// (2)弹元素 -- 先弹,将节点的key放到keys中,判断有没有左右子节点,如果有放到队列中
while (!nodes.isEmpty()){
Node x = nodes.dequeue(); // 弹出节点
keys.enqueue((Key) x.key); // 把弹出元素的key放到队列中
if(x.left!=null){
nodes.enqueue(x.left);
}
if (x.right!=null){
nodes.enqueue(x.right);
}
}
return keys;
}
7.5 二叉树的最大深度
// 最大深度
public int maxDepth(){
return maxDepth(root);
}
// 计算指定树x的最大深度
private int maxDepth(Node x){
// 1、如果根节点为空,则最大深度为0
if (x==null){
return 0;
}
int max = 0;
int maxL = 0;
int maxR = 0;
// 2、计算左子树的最大深度
if (x.left!=null){
maxL = maxDepth(x.left);
}
// 3、计算右子树的最大深度
if (x.right!=null){
maxR = maxDepth(x.right);
}
// 4、当前树的最大深度 = 左子树最大深度 + 右子树最大深度 + 1
max = maxL > maxR ? maxL+1 : maxR+1;
return max;
}