如何使用Docker部署Django项目?

第一步:创建Dockerfile文件

在django项目的根目录中创建一个名为Dockerfile的文件,并写入如下配置:

# 使用 Python 3.12 作为基础镜像
FROM python:3.12

# 设置工作目录
WORKDIR /app

# 复制项目文件到工作目录
COPY . /app

# 设置清华 pip 镜像
ENV PIP_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple
ENV PIP_TRUSTED_HOST=pypi.tuna.tsinghua.edu.cn

# 安装项目依赖
RUN pip install -r requirements.txt

# 设置环境变量
ENV PYTHONUNBUFFERED=1

# 启动 Django 服务器
CMD ["python", "manage.py", "runserver", "0.0.0.0:8000"]

第二步:将Django项目上传到服务器的某个目录中

这里以1Panel面板为例,将Django项目上传到这个地方

第三步:cd至Django项目所在目录并在终端中打开输入如下命令

比如我这里Django项目上传的路径是:

cd /opt/1panel/apps/openresty/openresty/www/sites/django-app

第四步: 执行Docker的构建命令

docker build -t django-app .

这段Docker命令的含义如下:

  1. docker build: 这是Docker命令的一部分,用于构建Docker镜像。

  2. -t django-app: 这是docker build命令的一个选项,用于为构建的镜像指定一个标签(tag)。在这个例子中,将构建的镜像标记为“django-app”。

  3. .: 这是docker build命令的参数,指定了要构建的Dockerfile所在的路径。.表示当前目录,即Dockerfile位于当前目录中。
    在这里插入图片描述

第五步: 执行Docker的运行命令

docker run -d --name my-django-container -p 8000:8000 django-app

这段Docker命令的含义如下:

  1. docker run: 这是Docker命令的一部分,用于创建并运行一个新的容器。

  2. -d: 这是docker run命令的一个选项,它表示以“后台模式”或“守护进程”运行容器,即在后台运行容器而不阻塞终端。

  3. --name my-django-container: 这是为容器指定一个名称的选项。在这个例子中,容器将被命名为“my-django-container”。

  4. -p 8000:8000: 这个选项将主机(Host)的端口映射到容器的端口。在这个例子中,它将主机的端口8000映射到容器的端口8000。这意味着,当主机上的用户访问主机的8000端口时,请求将被重定向到运行在容器内的应用程序的8000端口上。

  5. django-app: 这是要在容器中运行的Django应用程序的名称或标签。假设在Docker中已经有一个包含Django应用程序的镜像,并且它已经被命名为“django-app”。
    在这里插入图片描述

最后:查看镜像

docker ps

该命令会列出正在运行的镜像,如过看到镜像列表中有刚刚部署上去的Django项目,就代表项目部署成功。至此,可以在浏览器中输入http://xxx.xxx.xxx.xxx:8000进行访问

在这里插入图片描述
在这里插入图片描述

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台搭建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的搭建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
在无线通信领域,天线阵列设计对于信号传播方向和覆盖范围的优化至关重要。本题要求设计一个广播电台的天线布局,形成特定的水平面波瓣图,即在东北方向实现最大辐射强度,在正东到正北的90°范围内辐射衰减最小且无零点;而在其余270°范围内允许出现零点,且正西和西南方向必须为零。为此,设计了一个由4个铅垂铁塔组成的阵列,各铁塔上的电流幅度相等,相位关系可自由调整,几何布置和间距不受限制。设计过程如下: 第一步:构建初级波瓣图 选取南北方向上的两个点源,间距为0.2λ(λ为电磁波波长),形成一个端射阵。通过调整相位差,使正南方向的辐射为零,计算得到初始相位差δ=252°。为了满足西南方向零辐射的要求,整体相位再偏移45°,得到初级波瓣图的表达式为E1=cos(36°cos(φ+45°)+126°)。 第二步:构建次级波瓣图 再选取一个点源位于正北方向,另一个点源位于西南方向,间距为0.4λ。调整相位差使西南方向的辐射为零,计算得到相位差δ=280°。同样整体偏移45°,得到次级波瓣图的表达式为E2=cos(72°cos(φ+45°)+140°)。 最终组合: 将初级波瓣图E1和次级波瓣图E2相乘,得到总阵的波瓣图E=E1×E2=cos(36°cos(φ+45°)+126°)×cos(72°cos(φ+45°)+140°)。通过编程实现计算并绘制波瓣图,可以看到三个阶段的波瓣图分别对应初级波瓣、次级波瓣和总波瓣,最终得到满足广播电台需求的总波瓣图。实验代码使用MATLAB编写,利用polar函数在极坐标下绘制波瓣图,并通过subplot分块显示不同阶段的波瓣图。这种设计方法体现了天线阵列设计的基本原理,即通过调整天线间的相对位置和相位关系,控制电磁波的辐射方向和强度,以满足特定的覆盖需求。这种设计在雷达、卫星通信和移动通信基站等无线通信系统中得到了广泛应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员禅心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值