1. 问题链接:CCF 201609-2 火车购票
试题编号: | 201609-2 |
试题名称: | 火车购票 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
请实现一个铁路购票系统的简单座位分配算法,来处理一节车厢的座位分配。
假设一节车厢有20排、每一排5个座位。为方便起见,我们用1到100来给所有的座位编号,第一排是1到5号,第二排是6到10号,依次类推,第20排是96到100号。 购票时,一个人可能购一张或多张票,最多不超过5张。如果这几张票可以安排在同一排编号相邻的座位,则应该安排在编号最小的相邻座位。否则应该安排在编号最小的几个空座位中(不考虑是否相邻)。 假设初始时车票全部未被购买,现在给了一些购票指令,请你处理这些指令。
输入格式
输入的第一行包含一个整数
n,表示购票指令的数量。
第二行包含 n个整数,每个整数 p在1到5之间,表示要购入的票数,相邻的两个数之间使用一个空格分隔。
输出格式
输出
n行,每行对应一条指令的处理结果。
对于购票指令 p,输出 p张车票的编号,按从小到大排序。
样例输入
4
2 5 4 2
样例输出
1 2
6 7 8 9 10 11 12 13 14 3 4
样例说明
1) 购2张票,得到座位1、2。
2) 购5张票,得到座位6至10。 3) 购4张票,得到座位11至14。 4) 购2张票,得到座位3、4。
评测用例规模与约定
对于所有评测用例,1 ≤
n ≤ 100,所有购票数量之和不超过100。
|
2. 问题分析:
经过读题分析,本题是一道简单模拟题,每次用贪心策略分配车厢座位,可以采用数组实现,也可以用map数据结构实现,使用数组虽然存在重复搜索,但逻辑较为清晰。标记二维数组is_purchased表示一节车厢全部的座位是否已分配,数组ticket_num存储每次的购票指令p,即要购入的票数。注意到题面中说如果这几张票可以安排在同一排编号相邻的座位,则应该安排在编号最小的相邻座位。否则应该安排在编号最小的几个空座位中(不考虑是否相邻)。故每次分配座位前,设置一个标记变量is_adjacent表示是否相邻分配,默认每次未按照编号相邻座位进行分配,若存在一排可以按照编号相邻的座位分配,则将is_adjacent赋值为1;另外设置一个存储余票数量的变量remain,默认当前排余票为5张,然后每排首先根据搜索结果确定实际余票数量,然后再决定后续座位分配。
3. C++语言程序实现:
#include <iostream>
using namespace std;
const int N=100,ROW=20,COLUMN=5;
int is_purchased[ROW][COLUMN]= {0};
int ticket_num[N]= {0};
int main()
{
int n,ticket,remain,start,stop,is_adjacent;
cin>>n;
for (int i=0; i<n ; i++ )
{
cin>>ticket_num[i];
}
for (int i=0; i<n ; i++ )
{
ticket=ticket_num[i];
for (int j=0; j<ROW ; j++ )
{
remain=5,is_adjacent=0;
for (int l=0; l<COLUMN ; l++ )
{
remain-=is_purchased[j][l];
}
if (remain>=ticket)
{
start=COLUMN-remain;
stop=start+ticket;
for (int k=start; k<stop ; k++ )
{
is_purchased[j][k]=1;
cout<<(5*j+k+1)<<" ";
}
is_adjacent=1;
break;
}
}
if (!is_adjacent)
{
for (int j=0;j<ROW ;j++ )
{
for (int k=0;(k<COLUMN)&&(ticket>0) ;k++ )
{
if (!is_purchased[j][k])
{
ticket--;
is_purchased[j][k]=1;
cout << (5*j+k+1) << " ";
}
}
}
}
cout << endl;
}
return 0;
}