题目描述
方格填数
如下的10个格子
填入0~9的数字。要求:连续的两个数字不能相邻。
(左右、上下、对角都算相邻)
一共有多少种可能的填数方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
解题思路
这也是一题全排列题,这题我是用二维数组与递归思想做的
同样也能用暴力枚举做,但是不提倡,容易出错,这边就不展示了
最近连着做了几题都是差不多类型的题,有兴趣的同学可以看看,突破一下这类题型
点击跳转【蓝桥杯省赛JavaB组真题详解】凑算式(2016)
点击跳转【蓝桥杯省赛JavaB组真题详解】抽签(2016)
点击跳转【蓝桥杯省赛JavaB组真题详解】牌型种数(2015)
参考代码
public class Main {
static int count = 0;
static int[][] m=new int[3][4];
static boolean[] v=new boolean[10];
public static void main(String[] args) {
m[0][0] = m[2][3] = -2;
dfs(0,1);
System.out.println(count);
}
private static void dfs(int x,int y) {
//这里判断条件其实也可以在增加个形参计数,但这题条件特殊可以代替
if(m[x][y] == -2) {
count++;
}else {
for (int i = 0; i <= 9; i++) {
if(!v[i] && check(i,x,y)) {
v[i]=true;
m[x][y]=i;
if(y + 1 == 4) {
dfs(x+1, 0);
}else {
dfs(x, y+1);
}
v[i]=false;//回溯
}
}
}
}
//因为是按顺序比较,所以只要比较左,上,左上,右上
private static boolean check(int i,int x,int y) {
if (y - 1 >= 0 && Math.abs(m[x][y - 1] - i) == 1) {
return false;
}
if (x - 1 >= 0 && Math.abs(m[x - 1][y] - i) == 1) {
return false;
}
if (x - 1 >= 0 && y - 1 >= 0 && Math.abs(m[x - 1][y - 1] - i) == 1) {
return false;
}
if (x - 1 >= 0 && y + 1 < 4 && Math.abs(m[x - 1][y + 1] - i) == 1) {
return false;
}
return true;
}
}
答案:1580