一、Hive表压缩格式
二、几种压缩方式推荐使用场景:
1、bzip2压缩(冷数据)
优点:支持split;具有很高的压缩率,比gzip压缩率都高,hadoop本身支持,但不支持native,在linux系统下自带bzip2命令,使用方便。
缺点:压缩/解压缩速度慢,不支持native。
应用场景:适合对速度要求不高,但需要较高压缩率的时候,可以作为MapReduce作业的输出格式,或者输出之后的数据比较大,处理之后的数据需要压缩存档减少磁盘空间并且以后数据用的较少的情况。或者对但单个很大的文本文件想压缩减少存储空间,同时又需要支持split,而且兼容之前的应用程序(即应用程序不需要修改)的情况。
2、gzip压缩(冷数据)
优点:压缩速率比较高,而且压缩/解压缩速度也比较快,hadoop本身支持,在应用中处理gzip格式的文件就和直接处理文本一样,有hadoop native库,大部分linux系统都自带gzip命令,使用方便。
缺点:不支持split,压缩/解压缩速度一般。
应用场景:当每个文件压缩之后再130M以内的(1个块大小内),都可以考虑使用gzip压缩格式。比如说一天或者一个小时的日志压缩成一个gzip文件,运行mapreduce程序的时候通过多个gzip文件达到并发。Hive程序,streaming程序,和java写的mapreduce程序完全和文本处理一样,压缩之后原来的程序不需要做任何修改。
3、zlib压缩
优点:压缩率比较高,而且压缩/解压缩速度也比较块。
缺点:不支持split。
应用场景:orc格式文件的默认压缩方式。
4、Lz4压缩
优点:高速压缩速度和合理的压缩率,支持hadoop native库。
缺点:不支持split,压缩率比gzip要低,parquet和orc格式的文件不支持此压缩格式。
应用场景:当mapreduce作业的map输出的数据比较大的时候,作为map到reduce的中间数据的压缩格式,后者作为一个mapreduce作业的输出和另外一个mapreduce作业的输入。
5、snappy压缩(热数据)
优点:高速压缩速度和合理的压缩率,支持hadoop native库。
缺点:不支持split,压缩率比gzip要低,hadoop本身不支持,需要安装,linux系统下没有对应命令。
应用场景:当mapreduce作业的输出的数据比较大的时候,作为map到reduce的中间数据的压缩格式,或者作为一个mapreduce作业的输出和另外一个mapreduce作业的输入。