论文笔记
文章平均质量分 91
阅读论文时的随手记
路过的风666
https://github.com/ThePassedWind
展开
-
OR-NeRF论文笔记
用于新视图合成的神经辐射场(Neural Radiance Fields,NeRF)的出现提高了人们对三维场景编辑的兴趣。编辑的一项基本任务是从场景中移除目标,同时确保视觉合理性和多视图一致性。然而,当前的方法面临着一些挑战,如耗时的对象标记、移除特定目标的能力有限以及移除后的渲染质量受到影响。本文提出了一种名为 ORNeRF 的新型物体移除pipeline,它能在单个视图上通过用户给出的点或文本提示移除三维场景中的物体,与之前的作品相比,能在更短的时间内实现更好的性能。原创 2023-12-29 22:36:44 · 1493 阅读 · 1 评论 -
RO-NeRF论文笔记
以基于置信度的视图选择程序为基础。它选择在创建 NeRF 时使用那些单独的 2D 修复图像,以便生成的修复 NeRF 是 3D 一致的原创 2023-12-29 20:35:35 · 1312 阅读 · 0 评论 -
Focal Loss-解决样本标签分布不平衡问题
样本不平衡造成的问题就是,样本数少的类别分类难度大,因此Focal Loss聚焦于难分样本,解决了样本少的类别分类精度不高的问题,对于难分样本中样本多的类别,也会被Focal Loss聚焦。对于样本不平衡造成的损失函数倾斜,最直接的方法就是添加权重因子,提高少数类别在损失函数中的权重,从而平衡损失函数的分布。若Loss中难分类样本的权重较高,但是难分类样本的Loss梯度为0,难分类样本就不会影响到模型的参数更新。Focal Loss从样本难易分类的角度出发,解决了样本不平衡导致模型性能较低的问题。原创 2023-08-28 15:56:27 · 879 阅读 · 1 评论 -
STTran: Spatial-Temporal Transformer for Dynamic Scene Graph Generation
动态场景图生成的目标是在给定的视频中生成场景图。与静态图片的场景图生成相比之下,它由于动态关系和时间依赖,能够获得更丰富的语义解释。本文提出STTran,包含了spatial encoder和temporal decoderspatial encoder:对输入的每一帧提取空间上下文以及视觉关系。temporal decoder:以spatial encoder的输出作为输入,从而捕获帧与帧之间的时间依赖关系,并推理动态关系。STTran能适用于不同时长的视频,尤其是能对长视频能有不错的效果。原创 2023-08-26 19:09:05 · 930 阅读 · 0 评论 -
ST-HOI: A Spatial-Temporal Baseline for Human-Object Interaction Detection in Videos
VidHOI的开山之作。大量研究都是检测静态图片中的human-object-interaction(HOI),在对视频推理时,跟时间相关的动态交互将无法判别,因为它们无法考虑到相邻帧之间的关系,只能对每一帧单独进行推理。然而,视频数据是有序且结构化的,动态交互(如push vs pull、open vs close)需要考虑多帧的特征才能准确推理。原创 2023-08-13 13:21:41 · 401 阅读 · 1 评论 -
ViT-vision transformer
Transformer最早是在NLP领域提出的,受此启发,Google将其用于图像,并对分类流程作尽量少的修改。原创 2023-07-28 18:19:08 · 1676 阅读 · 0 评论 -
MUREN(Relational Context Learning for Human-Object Interaction Detection)
参考目前的静态图片HOI的SOTA模型(MUREN),针对以往的1/2 branch的decoder的不足,它提出了three-branch architecture(human detection, object detection, interaction classification)原创 2023-07-25 17:16:46 · 311 阅读 · 0 评论 -
StrongSORT_文献翻译
StrongSORT【摘要】现有的MOT方法可以被分为tracking-by-detection和joint-detection-association。后者引起了更多的关注,但对于跟踪精度而言,前者仍是最优的解决方案。StrongSORT在DeepSORT的基础之上,更新了它的检测、嵌入和关联等多个方面,由此产生了StrongSORT追踪器,在MOT17和MOT20数据集上缺德了新的HOTA和IDF1记录。同时,作者还提出了两个轻量化且即插即用的算法去提升跟踪结果,分别是AFLink和GSI。AFLi原创 2023-05-12 15:08:21 · 997 阅读 · 0 评论 -
GSDMM短文本聚类
文章目录优点例子代码测试结果[1] Yin J, Wang J. A dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014: 233-242.与LDA不同,GSDMM针对较小文档,假设每原创 2022-04-09 17:03:52 · 1971 阅读 · 2 评论 -
面向多个知识图谱的实体对齐
论文笔记:[1]徐有为,张宏军,程恺,廖湘琳,张紫萱,李雷.知识图谱嵌入研究综述[J/OL].计算机工程与应用:1-25[2022-02-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20220128.1648.002.html.文章目录实体对齐概述概念目标框架步骤实体对齐模型基于三元组的模型方法基于路径的模型基于图的模型实体对齐概述概念与实体消岐相反,实体对齐是针对“同义异名”的实体,即判断两个实体是否指向真实世界中的同一对象的过程。数据库领域.原创 2022-02-21 10:30:53 · 2133 阅读 · 1 评论 -
FastText的短文本分类
论文笔记:[1]王光慈,汪洋.基于FastText的短文本分类[J].电子设计工程,2020,28(03):98-101.DOI:10.14022/j.issn1674-6236.2020.03.022.[2]梁增宇. 基于改进FastText的中文文本分类研究[D].大连理工大学, 2021.DOI:10.26991/d.cnki.gdllu.2021.003183.文章目录传统文本分类方法文本预处理文本表示和特征提取文本表示特征提取分类器选择FastText原理模型架构层次softmaxN-g.原创 2022-02-12 21:49:15 · 847 阅读 · 0 评论 -
基于Laplacian图谱的短文本聚类算法
论文笔记:[1]孟海宁,冯锴,朱磊,张贝贝,童新宇,黑新宏.基于Laplacian图谱的短文本聚类算法[J].电子学报,2021,49(09):1716-1723.论文笔记内容包括:应用场景、优势亮点、方法步骤应用场景短文本是生活中极其常见的内容形式,手机短信、用户评论及微博话题等都属于短文本,对短文本进行聚类分析具有重要的应用价值,如对用户评论进行观点挖掘、对社交媒体进行话题检测以及舆情预警等。由于短文本数据的特点,会导致传统的聚类算法对短文本聚类精度不高且收敛速度较慢,特点如下:特征维.原创 2022-02-12 16:38:43 · 563 阅读 · 1 评论 -
知识图谱关键技术总览
知识图谱关键技术[1] 马忠贵,倪润宇,余开航.知识图谱的最新进展、关键技术和挑战[J].工程科学学报,2020,42(10):1254-1266.DOI:10.13374/j.issn2095-9389.2020.02.28.001.文章目录知识图谱关键技术知识抽取与表示知识融合知识推理与质量评估质量评估知识图谱应用知识图谱的挑战与展望知识融合技术知识推理技术知识的表示、存储和查询知识图谱全生命周期主要包括3种关键技术:从样本源中获取数据,并将其表示为结构化知识的知识抽取与表示技术融合异源原创 2022-02-07 20:36:35 · 3471 阅读 · 0 评论 -
实体消歧综述整理
阅读文献:[1] 段宗涛,李菲,陈柘.实体消歧综述[J].控制与决策,2021,36(05):1025-1039.DOI:10.13195/j.kzyjc.2020.0388.文章目录分类按实体任务领域划分按有无目标知识库划分按链接知识库类型划分词义消岐命名实体识别方法基于无监督聚类的消岐系统(1) 基于词袋模型的聚类方法(2) 基于语义特征的聚类方法(3) 基于社会化网络的聚类方法(4) 基于百科知识的聚类方法(5) 基于多源异构语义知识融合的聚类方法基于实体链接的实体消歧其他实体消岐应用测评总结与.原创 2022-01-29 21:48:08 · 3812 阅读 · 0 评论