python对excel的处理
pandas库 openpyxl库 非常适合处理Excel数据。
进行数据分析和处理,使用pandas更加合适。只需读取或者写入Excel文件,或者对Excel文件进行简单的操作,openpyxl是更好的选择。
pandas库可以读写各种格式的Excel文件,包括.xls和.xlsx格式,pandas最常用的数据结构是Series和DataFrame。Series是一维数组,类似于Python中的列表或者Numpy中的一维数组,但是Series可以存储不同类型的数据类型。DataFrame是一个二维表格,可以存储不同类型的数据类型,类似于Excel或者SQL中的表格。pandas库可以用于数据清洗、数据分析、数据可视化等方面。
openpyxl库更加专注于Excel文件的读取和写入,而不是数据分析和处理。openpyxl可以读取和写入Excel文件中的单元格、行、列、工作表和工作簿,并提供了许多用于操作Excel文件的函数和方法。
还有其他一些库可以用于处理Excel数据,例如xlrd、xlwt、xlutils等等。
xlrd、xlwt 看这里 很实用
python对.csv 的处理
使用内置的csv模块来读取、写入和处理CSV文件。csv模块提供了一些用于处理CSV文件的函数和方法,例如排序、过滤、计算统计信息等等。
CSV文件是一种纯文本格式,数据通常都是字符串类型,不包含样式和其他元数据。CSV文件只能包含单个工作表,适用于简单的数据存储和传输。
一些pandas库常用函数:
读取数据:read_csv、read_excel、read_sql等函数,读取各种格式的数据文件。
数据清洗:dropna、fillna、replace等函数,删除缺失值、填充缺失值、替换数据。
数据转换:apply、map、groupby等函数,对数据进行转换、分组、聚合等操作。
数据合并:merge、concat、join等函数,可以将多个数据表格进行合并。
数据统计:mean、median、std、var等,计算平均值、中位数、标准差、方差。
数据可视化:可视化函数,例如plot、hist、scatter等等,可以将数据可视化为图表、直方图、散点图等等。