python对excel csv文件的处理

文章介绍了Python中pandas和openpyxl库在处理Excel数据时的作用。pandas适合数据分析,其DataFrame结构便于数据操作;而openpyxl专注于Excel文件的读写。此外,还提到了csv模块在处理CSV文件上的应用,以及pandas的一些关键函数,如数据读取、清洗、转换、合并和统计分析功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python对excel的处理

pandas库 openpyxl库 非常适合处理Excel数据。
进行数据分析和处理,使用pandas更加合适。只需读取或者写入Excel文件,或者对Excel文件进行简单的操作,openpyxl是更好的选择。

pandas库可以读写各种格式的Excel文件,包括.xls和.xlsx格式,pandas最常用的数据结构是Series和DataFrame。Series是一维数组,类似于Python中的列表或者Numpy中的一维数组,但是Series可以存储不同类型的数据类型。DataFrame是一个二维表格,可以存储不同类型的数据类型,类似于Excel或者SQL中的表格。pandas库可以用于数据清洗、数据分析、数据可视化等方面。

openpyxl库更加专注于Excel文件的读取和写入,而不是数据分析和处理。openpyxl可以读取和写入Excel文件中的单元格、行、列、工作表和工作簿,并提供了许多用于操作Excel文件的函数和方法。

还有其他一些库可以用于处理Excel数据,例如xlrd、xlwt、xlutils等等。
xlrd、xlwt 看这里 很实用

python对.csv 的处理

使用内置的csv模块来读取、写入和处理CSV文件。csv模块提供了一些用于处理CSV文件的函数和方法,例如排序、过滤、计算统计信息等等。
CSV文件是一种纯文本格式,数据通常都是字符串类型,不包含样式和其他元数据。CSV文件只能包含单个工作表,适用于简单的数据存储和传输。

一些pandas库常用函数:

读取数据:read_csv、read_excel、read_sql等函数,读取各种格式的数据文件。
数据清洗:dropna、fillna、replace等函数,删除缺失值、填充缺失值、替换数据。
数据转换:apply、map、groupby等函数,对数据进行转换、分组、聚合等操作。
数据合并:merge、concat、join等函数,可以将多个数据表格进行合并。
数据统计:mean、median、std、var等,计算平均值、中位数、标准差、方差。
数据可视化:可视化函数,例如plot、hist、scatter等等,可以将数据可视化为图表、直方图、散点图等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值