从线性插值到克里金插值(kriging)再到特征提取

本文探讨了克里金插值方法在地学计算中的应用,特别是如何解决输入数据差异大的问题。通过变差模型缓解孔穴效应,以改善插值效果。文章还介绍了如何调整模型参数,如 nugget、sill 和 range,以匹配实验变差函数。此外,文章提到了时空克里金和Spartan型非分离变差模型在地下水位时空分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

地学计算方法/地统计学(第四章变异函数理论模型)

当插值的原始输入差别较大时,克里金插值效果会很差,让整个区域的插值都为一个常数
这时可以考虑使用变差模型hole-effect,孔穴效应模型,能有效缓解这个问题

#pykrige包计算插值结果
from pykrige.ok import OrdinaryKriging

OK=OrdinaryKriging(lons, lats, data/100
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值