#经典论文 异质山坡的物理模型 2 有效导水率

Binley, A., Beven, K., & Elgy, J. (1989). A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Research, 25(6), 1227–1233. https://doi.org/10.1029/WR025i006p01227

这篇论文指出,
每个输出变量(取决于过程中的非线性程度和属性的空间可变性)可能需要不同的聚合过程!?

摘要

Using the results of a fully three-dimensional model of variably saturated flow on a heterogeneous hillslope, the concept of equivalent homogeneous hillslopes is explored. By considering single realizations of random patterns of saturated hydraulic conductivity, attempts are made to determine single effective hydraulic conductivity values capable of reproducing both subsurface and surfaceflow hydrographs. For the case of high-permeability soils, effective parameters were found to reasonably reproduce the hillslope hydrograph, although there was no consistent relationship between the effective values and the moments of the spatial distributions. For the case of low-permeability soils, characterized by surface flow domination of the runoff hydrograph, single effective parameters were not found to be capable of reproducing both subsurface and surfaceflow responses. Furthermore, the event dependency of effective conductivity values under such conditions was demonstrated

中文翻译

利用异质山坡上可变饱和流的全三维模型的结果,探索了等效均质山坡的概念。 通过考虑饱和导水率随机模式的单一实现,尝试确定能够再现地下和表面流过程线的单一有效导水率值。 对于高渗透性土壤的情况,尽管有效值与空间分布矩之间没有一致的关系,但找到了合理再现山坡过程线的有效参数。 对于以径流过程线的地表流主导为特征的低渗透性土壤的情况,没有发现单个有效参数能够再现地下和地表流响应。 此外,还证明了在这种条件下有效电导率值的事件依赖性

点评

这是系列作品,前一个作品探究了,在 150 × 100 150\times100 150×100 m的山坡上,不同随机模式的饱和导水率对斜坡的影响。

其结果表明,结果表明,特别是对于产生地表径流的低导水率土壤的情况,山坡尺度上的土壤性质空间变异可能对径流过程线产生相当大的影响。

等效参数值的概念在当前基于物理的流域水文模型中再现土壤空间变异性的影响是至关重要的。
当前的水文实践假设大尺度的异质性可以集中到有效的参数值中(参见第 1 部分的讨论)。

如果不能找到这样的等效属性来代表真实的异构系统,那么基于物理的模型的实际预测价值有限。

本研究的目的是检验第1部分中考虑的一些水力导电性分布的有效参数值的有效性


The concept of effective hydraulic conductivity values has been a source of interest for many years.

有效水力传导率值(effective hydraulic conductivity)的概念多年来一直引起人们的兴趣。

Cardwell and Parsons 1945 考虑均匀二维稳定饱和流通过由不同导电性的小块组成的多孔介质块的情况

It is easily shown that for an arrangement of blocks in series the harmonic mean(•H) of the block values is an equivalent hydraulic conductivity. Similarly,the arithmetic mean(•A) represents a system of blocks in parallel.

很容易证明,对于串联块的布置,块值的调和平均值(·H)是等效的水力传导率。 类似地,算术平均值(·A)表示并行块的系统。

Cardwell and Parsons were able to demonstrate that the effective conductivity for any assemblage of blocks lies between these two extreme values.

卡德威尔和帕森斯能够证明,任何块体组合的有效电导率都位于这两个极值之间。

On the basis of a similar arrangement of permeability cells, Marshall [1962] developed an expression for the equivalent permeability of a heterogeneous medium.

在渗透性细胞的类似排列的基础上,Marshall [1962]开发了异质介质的等效渗透性的表达式。


The results of the Monte Carlo simulations of Warren and Price [1961], on steady state groundwater flow, led them to suggest that the geometric mean ( K G K_G KG) of the individual block hydraulic conductivities is capable of representing the nonuniform system.

Warren 和 Price [1961] 对稳态地下水流的蒙特卡罗模拟结果表明,各个区块水力传导率的几何平均值 ( K G K_G KG) 能够代表非均匀系统。

Freeze [1975] disputed these claims in his analysis of transient one-dimensional saturated flow and concluded that, under such conditions, an equivalent uniform media is undefinable.

Freeze [1975] 在他对瞬态一维饱和流的分析中对这些主张提出了质疑,并得出结论认为,在这种条件下,等效均匀介质是无法定义的。


Using analytical expressions, Gutjhar et al. [1978] and Dagan [1979] found that for two-dimensional steady saturated flow in domains of low variability the geometric mean of the log normal distribution of hydraulic conductivity is a suitable effective value.

Gutjhar [1978] 等人和 Dagan [1979]使用分析表达式。 发现,对于低变化域中的二维稳定饱和流,导水率对数正态分布的几何平均值是一个合适的有效值。

However, Dagan [1979] estimated the effective value for three-dimensional flow through highly variable soil to be over 4 times larger than K G K_G KG.

然而,Dagan [1979]估计,通过高度可变土壤的三维流的有效值比 K G K_G KG 大 4 倍以上。

On the basis of a Monte Carlo analysis of two-dimensional steady saturated flow, Smith and Freeze [1979] have shown that the geometric mean effective value may only be suitable under strict conditions.

Smith 和 Freeze [1979] 基于二维稳态饱和流的蒙特卡罗分析表明,几何平均有效值可能只适用于严格的条件。


In their study of vertical infiltration, Dagan and Bresler [1983] and Bresler and Dagan [1983] demonstrated that effective parameters may only be meaningful under certain restrictive conditions such as steady flow.

在垂直渗透的研究中,Dagan 和 Bresler [1983] 以及 Bresler 和 Dagan [1983] 证明,有效参数可能仅在某些限制条件(例如稳定流)下才有意义。

Difficulties in selecting an equivalent porous medium under conditions of unsteady vertical infiltration are also reported in the earlier work of Russo and Bresler [1981].

Russo 和 Bresler [1981] 的早期工作也报道了在不稳定垂直渗透条件下选择等效多孔介质的困难。


Yeh et al. [1985] presented analytical expressions for the effective conductivity of three-dimensional steady unsaturated flow.

叶天齐等人[1985]提出了三维稳态非饱和流有效电导率的解析表达式。

For soils of low variability, K G K_G KG appeared to be a suitable equivalent parameter.

对于低变异性土壤, K G K_G KG 似乎是一个合适的等效参数。

Larger values, however, were found to be appropriate for fields of greater nonhomogeneity.

然而,较大的值被发现适用于较大非均匀性的场。

The findings of Yeh et al. thus complement the earlier conclusions of Dagan [1979]with respect to saturated groundwater movement.

叶等人的研究结果。 从而补充了 Dagan [1979]关于饱和地下水运动的早期结论。


In a Monte Carlo analysis of the drainage of an unconfined aquifer, using a two-dimensional saturated flow approximation, El-Kadi and Brutsaert [1985] noted that the effective hydraulic conductivity was a function of time. For small times, using the geometric mean as an equivalent parameter, the outflow of the aquifer was consistently underestimated, although K G K_G KG was found to be suitable for large times

在使用二维饱和流近似对无承压含水层排水进行蒙特卡罗分析时,El-Kadi 和 Brutsaert [1985] 指出,有效导水率是时间的函数。 对于小时间,使用几何平均值作为等效参数,含水层的流出量始终被低估,尽管发现 K G K_G KG 适用于大时间.

Variability of effective parameters for unsteady saturated flow had been suggested by Dagan [1982], using analytical expressions resulting from perturbation analysis.

Dagan [1982] 使用扰动分析得出的解析表达式提出了非稳态饱和流有效参数的可变性。

Dagan had concluded that, for the case of constant head initial conditions, the initial effective conductivity is equal to the arithmetic mean of the log normal distribution.

Dagan 得出的结论是,对于恒定水头初始条件的情况,初始有效电导率等于对数正态分布的算术平均值。

After sometime, termed the relaxation time, the effective conductivity is reduced to a value corresponding to that at steady state.

经过一段时间(称为弛豫时间)后,有效电导率会降低至与稳态时对应的值。

Example calculations by Dagan [1982] showed that typical values of the relaxation time for three-dimensional groundwater flows are likely to be if the order of several minutes

Dagan [1982] 的示例计算表明,三维地下水流的弛豫时间的典型值可能是几分钟的量级


Using spectral analysis applied to linearized partial differential equations of soil moisture movement, Mantoglou and Gelhat [1987a] developed a stochastic theory of three-dimensional transient unsaturated flow.

Mantoglou 和 Gelhat [1987a] 将谱分析应用于土壤水分运动的线性偏微分方程,发展了三维瞬态非饱和流的随机理论。

In a study of effective hydraulic conductivity for flow in stratified soils using this model, Mantoglou and Gelhat [1987b] demonstrated significant hysteresis in the effective values

在使用该模型对分层土壤中流动的有效导水率进行的研究中,Mantoglou 和 Gelhat [1987b] 证明了有效值存在显着的滞后现象

Such hysteresis was produced by the soil spatial variability rather than the hysteresis of the local parameter values

这种滞后是由土壤空间变化而不是局部参数值的滞后产生的


对数正态分布的几何平均是最合适的均质有效参数表达

Changing the initial conditions and event, determine whether the selected effective hydraulic conductivity remains valid.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

balabalahoo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值