自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(13)
  • 收藏
  • 关注

原创 Task05:模型建立和评估

Task05:模型搭建和评估本文参考datawhale开源学习资料# 导入本节相关数据包import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltfrom IPython.display import Image%matplotlib inlineplt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签

2021-07-21 23:52:47 221 1

原创 Task04:数据可视化

2 第二章:数据可视化本文参考datawhale开源学习资料本文学习中参考该视频开始之前,导入numpy、pandas包和数据%matplotlib inlineimport numpy as npimport pandas as pdimport matplotlib.pyplot as plt%matplotlib inline的作用:调用matplotlib.pyplot的绘图函数plot()进行绘图的时候,或者生成一个figure画布的时候,可以直接在python cons

2021-07-19 23:45:03 229

原创 Task03:数据重构

第二章:数据重构本文参考datawhale开源学习资料# 导入基本库import numpy as npimport pandas as pd# 测试:载入data文件中的:train-left-up.csvtext = pd.read_csv(r'E:\桌面\hands-on-data-analysis-master\第二章项目集合\data\train-left-up.csv')print(text.shape)text.head()(439, 4)

2021-07-17 22:08:48 269

原创 Task02:数据清洗及特征处理

2 第二章:数据清洗及特征处理本文参考datawhale开源学习资料#加载所需的库import numpy as npimport pandas as pd#加载数据train.csvdf = pd.read_csv('train.csv')df.head(3) PassengerId Survived Pclass Name Sex Age SibSp Pa

2021-07-15 21:40:15 180

原创 Task01:数据基础操作

前话刚刚结束6月份的图神经网络组队学习,又报名了7月份的动手学数据分析组队学习,希望自己能有所收获。本文参考datawhale开源学习资料在写作时和学习时主要参考了以下两篇:1,21 第一章:数据加载1.1 载入数据数据集下载1.1.1 任务一:导入numpy和pandasimport numpy as npimport pandas as pd1.1.2 任务二:载入数据(1) 使用相对路径载入数据df = pd.read_csv('train.csv')df.head(.

2021-07-14 00:19:20 177

原创 Task08:结语

Task10:结语一、前话第一次参加DataWhale的组队学习,收获颇多。很早就关注了DataWhale的公众号,平时也会浏览其推送的文章。某天晚上从实验室回到宿舍后,偶然看到了该公众号推送了组队学习的消息,好奇心驱使下点了进去,发现本期有图神经网络学习的内容。自己本身是研究AI+药物发现方向,阅读图神经网络的文章也有一段时间了,想着刚好跟着一起组队学习,巩固基础,扩展知识。刚开始是浏览了图神经网络组队学习的Github开源资料,发现这份资料写的非常用心,循序渐进,从简单的图论知识,到图神经网络简介,

2021-07-10 23:45:59 134 2

原创 Task07:超大规模数据集类的创建&图预测任务实践

Task07:超大规模数据集类的创建&图预测任务实践本文参考datawhale开源学习资料一、超大规模数据集类的创建1. Dataset基类简介InMemoryDataset:会一次性把数据全部加载到内存中。Dataset: 每次加载一个数据到内存中,在数据集比较大的时候使用。torch_geometric.data.Dataset需要实现另外的两个方法:len():返回数据集中的样本的数量。get():实现加载单个图的操作。注意:在内部,__getitem__()返回通过调用

2021-07-09 21:45:20 197

原创 Task06:基于图神经网络的图表征学习方法

Task06:基于图神经网络的图表征学习方法本文参考datawhale开源学习资料一、基于图同构网络(GIN)的图表征网络的实现1. GINConv–图同构卷积层提出图同构网络的论文是:How Powerful are Graph Neural Networks? ,可以参考【GNN】WL-test:GNN 的性能上界进行阅读。图同构卷积层的数学定义如下:xi′=hΘ((1+ϵ)⋅xi+∑j∈N(i)xj)\mathbf{x}^{\prime}_i = h_{\mathbf{\Theta}}

2021-07-05 20:57:05 2373

原创 Task05:超大图上的节点表征学习

Task05:超大图上的节点表征学习本文参考datawhale开源学习资料一、Cluster-GCN简介为了解决普通训练方法无法训练超大图的问题,Cluster-GCN论文提出:利用图节点聚类算法将一个图的节点划分为ccc个簇,每一次选择几个簇的节点和这些节点对应的边构成一个子图,然后对子图做训练。由于是利用图节点聚类算法将节点划分为多个簇,所以簇内边的数量要比簇间边的数量多得多,所以可以提高表征利用率,并提高图神经网络的训练效率。每一次随机选择多个簇来组成一个batch,这样不会丢失簇间的边

2021-07-01 22:45:03 228 1

原创 Task04:数据完整存储与内存的数据集类+节点预测与边预测任务实践

Task04:数据完整存储与内存的数据集类+节点预测与边预测任务实践本文参考datawhale开源学习资料一、数据完整存储与内存的数据集类对于占用内存有限的数据集,我们可以将整个数据集的数据都存储到内存里。PyG为我们提供了方便的构造数据完全存于内存的数据集类,简称为InMemory数据集类,在此小节我们就将学习构造InMemory数据集类的方式。此外,大数据集一般不会直接加载到内存中,这时候构建数据集的时候需要继承父类Dataset,本文不会讨论到,详细可参考PyG官方tutorial和这篇文章。

2021-06-27 21:08:49 282

原创 Task03:基于图神经网络的节点表征学习

Task03:基于图神经网络的节点表征学习在图节点预测或边预测任务中,首先需要生成节点表征(representation)。高质量节点表征应该能用于衡量节点的相似性,然后基于节点表征可以实现高准确性的节点预测或边预测,因此节点表征的生成是图节点预测和边预测任务成功的关键。基于图神经网络的节点表征学习可以理解为对图神经网络进行基于监督学习的训练,使得图神经网络学会产生高质量的节点表征。参考datawhale开源资料学习实现多层图神经网络的方法,以及训练图神经网络产生高质量节点表征并实现高准确性节点分类的一

2021-06-23 21:53:29 653 2

原创 Task02:消息传递图神经网络

Task02:消息传递图神经网络一、MPNN消息传递神经网络(Message Passing Neural Network,MPNN)首次提出于《Neural Message Passing for Quantum Chemistry》,在量子化学性质预测的任务中取得了不错的成绩,相关介绍可以见阿泽的学习笔记写的一篇文章。MPNN框架:MPNN主要包括两个阶段:消息传递阶段(Message Passing)、读出阶段(Readout),这里介绍消息传递阶段。xi(k)=γ(k)(xi(k−1),□

2021-06-19 21:46:42 609

原创 Task01:简单图论与环境配置与PyG

Task01:简单图论与环境配置与PyG一、简单图论具体可以参考datawhale开源资料结合以上知识,概括图在药物发现领域的简要概念(待补充):定义一(分子图):分子图被记为G={V,E}\mathcal{G}=\{\mathcal{V}, \mathcal{E}\}G={V,E},其中 V={v1,…,vN}\mathcal{V}=\left\{v_{1}, \ldots, v_{N}\right\}V={v1​,…,vN​}是数量为N=∣V∣N=|\mathcal{V}|N=∣V∣ 的原子

2021-06-16 17:24:02 217

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除