Task04:数据完整存储与内存的数据集类+节点预测与边预测任务实践

Task04:数据完整存储与内存的数据集类+节点预测与边预测任务实践

本文参考datawhale开源学习资料

一、数据完整存储与内存的数据集类

对于占用内存有限的数据集,我们可以将整个数据集的数据都存储到内存里。PyG为我们提供了方便的构造数据完全存于内存的数据集类,简称为InMemory数据集类,在此小节我们就将学习构造InMemory数据集类的方式。此外,大数据集一般不会直接加载到内存中,这时候构建数据集的时候需要继承父类Dataset,本文不会讨论到,详细可参考PyG官方tutorial这篇文章

1. InMemoryDataset基类简介

在PyG中,我们通过继承InMemoryDataset类来自定义一个数据可全部存储到内存的数据集类。

class InMemoryDataset(root: Optional[str] = None, transform: Optional[Callable] = None, pre_transform: Optional[Callable] = None, pre_filter: Optional[Callable] = None)

InMemoryDataset类初始化方法参数说明:

  • root:字符串类型,存储数据集的文件夹的路径。该文件夹下有两个文件夹:
    • 一个文件夹为记录在**raw_dir,它用于存储未处理的文件,从网络上下载的数据集原始文件**会被存放到这里;
    • 另一个文件夹记录在**processed_dir**,处理后的数据被保存到这里,以后从此文件夹下加载文件即可获得Data对象。
    • 注:raw_dirprocessed_dir是属性方法,我们可以自定义要使用的文件夹。
  • transform:函数类型,一个数据转换函数,它接收一个Data对象并返回一个转换后的Data对象。此函数在每一次数据获取过程中都会被执行。获取数据的函数首先使用此函数对Data对象做转换,然后才返回数据。此函数应该用于数据增广(Data Augmentation)。该参数默认值为None,表示不对数据做转换。
  • pre_transform:函数类型,一个数据转换函数,它接收一个Data对象并返回一个转换后的Data对象。此函数在Data对象被保存到文件前调用。因此它应该用于只执行一次的数据预处理。该参数默认值为None,表示不做数据预处理。
  • pre_filter:函数类型,一个检查数据是否要保留的函数,它接收一个Data对象,返回此Data对象是否应该被包含在最终的数据集中。此函数也在Data对象被保存到文件前调用。该参数默认值为None,表示不做数据检查,保留所有的数据。
参数作用
root存储数据的路径,raw_dirprocessed_dir
transform数据增强(每次都会执行)
pre_transform数据预处理(只会执行一次)
pre_filter数据过滤

通过继承InMemoryDataset类来构造一个我们自己的数据集类,我们需要实现四个基本方法

方法方法类型作用
raw_file_names()属性方法返回一个数据集原始文件的文件名列表,应该能在raw_dir文件夹中找到,否则调用download()函数下载文件到raw_dir文件夹
processed_file_names()属性方法返回一个存储处理过的数据的文件的文件名列表,存储处理过的数据的文件应该能在processed_dir文件夹中找到,否则调用process()函数对样本做处理,然后保存处理过的数据到processed_dir文件夹下的文件里
download()——下载数据集原始文件raw_dir文件夹
process()——处理数据,保存处理好的数据到processed_dir文件夹下的文件

2. InMemoryDataset数据集类实例

PlanetoidPubMed数据集类如下所示:

import os.path as osp

import torch
from torch_geometric.data import (InMemoryDataset, download_url)
from torch_geometric.io import read_planetoid_data

class PlanetoidPubMed(InMemoryDataset):
    r""" 节点代表文章,边代表引文关系。
   		 训练、验证和测试的划分通过二进制掩码给出。
    参数:
        root (string): 存储数据集的文件夹的路径
        transform (callable, optional): 数据转换函数,每一次获取数据时被调用。
        pre_transform (callable, optional): 数据转换函数,数据保存到文件前被调用。
    """

    url = 'https://github.com/kimiyoung/planetoid/raw/master/data'

    def __init__(self, root, transform=None, pre_transform=None):

        super(PlanetoidPubMed, self).__init__(root, transform, pre_transform)
        self.data, self.slices = torch.load(self.processed_paths[0])

    @property
    def raw_dir(self):
        return osp.join(self.root, 'raw')

    @property
    def processed_dir(self):
        return osp.join(self.root, 'processed')

    # 数据集原始文件有哪些
    @property
    def raw_file_names(self):
        names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
        return ['ind.pubmed.{}'.format(name) for name in names]

    #处理过的数据要保存在哪些文件里
    @property
    def processed_file_names(self):
        return 'data.pt'

    # 实现下载数据到`self.raw_dir`文件夹的逻辑
    def download(self):
        for name in self.raw_file_names:
            download_url('{}/{}'.format(self.url, name), self.raw_dir)

     # 实现数据处理的逻辑
    def process(self):
        data = read_planetoid_data(self.raw_dir, 'pubmed')
        data = data if self.pre_transform is None else self.pre_transform(data)
        torch.save(self.collate([data]), self.processed_paths[0])

    def __repr__(self):
        return '{}()'.format(self.name)

该类初始化方法的参数说明见代码。代码中还实现了raw_dir()processed_dir()两个属性方法,通过修改返回值我们就可以修改要使用的文件夹。

该数据集类的使用

在我们生成一个PlanetoidPubMed类的对象时,程序运行流程如下:

  • 首先,检查数据原始文件是否已下载
    • 检查self.raw_dir目录下是否存在raw_file_names()属性方法返回的每个文件,
    • 如有文件不存在,则调用download()方法执行原始文件下载。
    • self.raw_dirosp.join(self.root, 'raw')
  • 其次,检查数据是否经过处理
    • 首先,检查之前对数据做变换的方法:检查self.processed_dir目录下是否存在pre_transform.pt文件:
      • 如果存在,意味着之前进行过数据变换,接着需要加载该文件,以获取之前所用的数据变换的方法,并检查它与当前pre_transform参数指定的方法是否相同,
        • 如果不相同则会报出一个警告,“The pre_transform argument differs from the one used in ……”。
      • self.processed_dirosp.join(self.root, 'processed')
    • 其次,检查之前的样本过滤的方法:检查self.processed_dir目录下是否存在pre_filter.pt文件:
      • 如果存在,则加载该文件并获取之前所用的样本过滤的方法,并检查它与当前pre_filter参数指定的方法是否相同,
        • 如果不相同则会报出一个警告,“The pre_filter argument differs from the one used in ……”。
    • 接着,检查是否存在处理好的数据:检查self.processed_dir目录下是否存在self.processed_file_names属性方法返回的所有文件,如有文件不存在,则需要执行以下的操作:
      • 调用process()方法,进行数据处理。
        • 首先,我们从数据集原始文件中读取样本并生成Data对象,所有样本的Data对象保存在列表data_list中。
        • 其次,如果要对数据做过滤的话,我们执行数据过滤的过程。
        • 接着,如果要对数据做处理的话,我们执行数据处理的过程。
        • 最后,我们保存处理好的数据到文件。但由于python保存一个巨大的列表是相当慢的,我们需要先将所有Data对象合并成一个巨大的Data对象再保存。collate()函数接收一个列表的Data对象,返回合并后的Data对象以及用于从合并后的Data对象重构各个原始Data对象的切片字典slices。最后我们将这个巨大的Data对象和切片字典slices保存到文件。
      • 如果pre_transform参数不为None,则调用pre_transform()函数进行数据处理。
      • 如果pre_filter参数不为None,则进行样本过滤(此例子中不需要进行样本过滤,pre_filter参数为None)。
      • 保存处理好的数据到文件,文件存储在**processed_paths()**属性方法返回的文件路径。如果将数据保存到多个文件中,则返回的路径有多个。
        • processed_paths()属性方法是在基类中定义的,它对self.processed_dir文件夹与processed_file_names()属性方法的返回每一个文件名做拼接,然后返回。
      • 最后保存新的pre_transform.pt文件和pre_filter.pt文件,它们分别存储当前使用的数据处理方法和样本过滤方法。

最后让我们来查看这个数据集

dataset = PlanetoidPubMed('dataset/PlanetoidPubMed')
print(dataset.num_classes)
print(dataset[0].num_nodes)
print(dataset[0].num_edges)
print(dataset[0].num_features)

# 3
# 19717
# 88648
# 500

可以看到这个数据集包含三个分类任务,共19,717个结点,88,648条边,节点特征维度为500。

二、节点预测任务实践

完整代码见datawhale开源项目

1. 图神经网络定义

class GAT(torch.nn.Module):
    def __init__(self, num_features, hidden_channels_list, num_classes):
        super(GAT, self).__init__()
        torch.manual_seed(12345)
        hns = [num_features] + hidden_channels_list
        conv_list = []
        for idx in range(len(hidden_channels_list)):
            conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
            conv_list.append(ReLU(inplace=True),)

        self.convseq = Sequential('x, edge_index', conv_list)
        self.linear = Linear(hidden_channels_list[-1], num_classes)

    def forward(self, x, edge_index):
        x = self.convseq(x, edge_index)
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.linear(x)
        return x

我们通过hidden_channels_list参数来设置每一层GATConvoutchannel,所以hidden_channels_list长度即为GATConv的层数。通过修改hidden_channels_list,我们就可构造出不同的图神经网络。

神经网络由多个GATConv顺序相连而构成,因此我们使用了torch_geometric.nn.Sequential容器,详细内容可见于官方文档

2.数据集定义与加载

# 数据集类的构造
class PlanetoidPubMed(InMemoryDataset):
    r"""The citation network datasets "PubMed" from the
    `"Revisiting Semi-Supervised Learning with Graph Embeddings"
    <https://arxiv.org/abs/1603.08861>`_ paper.
    Nodes represent documents and edges represent citation links.
    Training, validation and test splits are given by binary masks.

    Args:
        root (string): Root directory where the dataset should be saved.
        split (string): The type of dataset split
            (:obj:`"public"`, :obj:`"full"`, :obj:`"random"`).
            If set to :obj:`"public"`, the split will be the public fixed split
            from the
            `"Revisiting Semi-Supervised Learning with Graph Embeddings"
            <https://arxiv.org/abs/1603.08861>`_ paper.
            If set to :obj:`"full"`, all nodes except those in the validation
            and test sets will be used for training (as in the
            `"FastGCN: Fast Learning with Graph Convolutional Networks via
            Importance Sampling" <https://arxiv.org/abs/1801.10247>`_ paper).
            If set to :obj:`"random"`, train, validation, and test sets will be
            randomly generated, according to :obj:`num_train_per_class`,
            :obj:`num_val` and :obj:`num_test`. (default: :obj:`"public"`)
        num_train_per_class (int, optional): The number of training samples
            per class in case of :obj:`"random"` split. (default: :obj:`20`)
        num_val (int, optional): The number of validation samples in case of
            :obj:`"random"` split. (default: :obj:`500`)
        num_test (int, optional): The number of test samples in case of
            :obj:`"random"` split. (default: :obj:`1000`)
        transform (callable, optional): A function/transform that takes in an
            :obj:`torch_geometric.data.Data` object and returns a transformed
            version. The data object will be transformed before every access.
            (default: :obj:`None`)
        pre_transform (callable, optional): A function/transform that takes in
            an :obj:`torch_geometric.data.Data` object and returns a
            transformed version. The data object will be transformed before
            being saved to disk. (default: :obj:`None`)
    """

    url = 'https://github.com/kimiyoung/planetoid/raw/master/data'

    def __init__(self, root, split="public", num_train_per_class=20,
                 num_val=500, num_test=1000, transform=None,
                 pre_transform=None):

        super(PlanetoidPubMed, self).__init__(root, transform, pre_transform)
        self.data, self.slices = torch.load(self.processed_paths[0])

        self.split = split
        assert self.split in ['public', 'full', 'random']

        if split == 'full':
            data = self.get(0)
            data.train_mask.fill_(True)
            data.train_mask[data.val_mask | data.test_mask] = False
            self.data, self.slices = self.collate([data])

        elif split == 'random':
            data = self.get(0)
            data.train_mask.fill_(False)
            for c in range(self.num_classes):
                idx = (data.y == c).nonzero(as_tuple=False).view(-1)
                idx = idx[torch.randperm(idx.size(0))[:num_train_per_class]]
                data.train_mask[idx] = True

            remaining = (~data.train_mask).nonzero(as_tuple=False).view(-1)
            remaining = remaining[torch.randperm(remaining.size(0))]

            data.val_mask.fill_(False)
            data.val_mask[remaining[:num_val]] = True

            data.test_mask.fill_(False)
            data.test_mask[remaining[num_val:num_val + num_test]] = True

            self.data, self.slices = self.collate([data])

    @property
    def raw_dir(self):
        return osp.join(self.root, 'raw')

    @property
    def processed_dir(self):
        return osp.join(self.root, 'processed')

    @property
    def raw_file_names(self):
        names = ['x', 'tx', 'allx', 'y', 'ty', 'ally', 'graph', 'test.index']
        return ['ind.pubmed.{}'.format(name) for name in names]

    @property
    def processed_file_names(self):
        return 'data.pt'

    def download(self):
        for name in self.raw_file_names:
            download_url('{}/{}'.format(self.url, name), self.raw_dir)

    def process(self):
        data = read_planetoid_data(self.raw_dir, 'pubmed')
        data = data if self.pre_transform is None else self.pre_transform(data)
        torch.save(self.collate([data]), self.processed_paths[0])

    def __repr__(self):
        return '{}()'.format(self.name)

# 数据的加载
dataset = PlanetoidPubMed(root='data/PlanetoidPubMed/', transform=NormalizeFeatures())
print('dataset.num_features:', dataset.num_features)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
data = dataset[0].to(device)


# 输出
#dataset.num_features: 500

PlanetoidPubMed数据集包含三个分类任务,共19,717个结点,88,648条边,节点特征维度为500。

3. 训练和评估函数

def train():
    model.train()
    optimizer.zero_grad()  # Clear gradients.
    out = model(data.x, data.edge_index)  # Perform a single forward pass.
    # Compute the loss solely based on the training nodes.
    loss = criterion(out[data.train_mask], data.y[data.train_mask])
    loss.backward()  # Derive gradients.
    optimizer.step()  # Update parameters based on gradients.
    return loss

def test():
    model.eval()
    out = model(data.x, data.edge_index)
    pred = out.argmax(dim=1)  # Use the class with highest probability.
    test_correct = pred[data.test_mask] == data.y[data.test_mask]  # Check against ground-truth labels.
    test_acc = int(test_correct.sum()) / int(data.test_mask.sum())  # Derive ratio of correct predictions.
    return test_acc

4. 模型的加载与训练

model = GAT(num_features=dataset.num_features, hidden_channels_list=[200, 100], num_classes=dataset.num_classes).to(device)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()

for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

输出如下:

GAT(
  (convseq): Sequential(
    (0): GATConv(500, 200, heads=1)
    (1): ReLU(inplace=True)
    (2): GATConv(200, 100, heads=1)
    (3): ReLU(inplace=True)
  )
  (linear): Linear(in_features=100, out_features=3, bias=True)
)

# 训练过程省略

Test Accuracy: 0.7560

三、边预测任务实践

完整代码见datawhale开源项目

1. 获取数据集并进行分析

获取数据集并进行分析

import os.path as osp

from torch_geometric.utils import negative_sampling
from torch_geometric.datasets import Planetoid
import torch_geometric.transforms as T
from torch_geometric.utils import train_test_split_edges


dataset = Planetoid('dataset', 'Cora', transform=T.NormalizeFeatures())
data = dataset[0]
data.train_mask = data.val_mask = data.test_mask = data.y = None # 不再有用
data = train_test_split_edges(data)

print(data.edge_index.shape)
# torch.Size([2, 10556])

for key in data.keys:
    print(key, getattr(data, key).shape)

# x torch.Size([2708, 1433])
# val_pos_edge_index torch.Size([2, 263])
# test_pos_edge_index torch.Size([2, 527])
# train_pos_edge_index torch.Size([2, 8976])
# train_neg_adj_mask torch.Size([2708, 2708])
# val_neg_edge_index torch.Size([2, 263])
# test_neg_edge_index torch.Size([2, 527])
# 263 + 527 + 8976 = 9766 != 10556
# 263 + 527 + 8976/2 = 5278 = 10556/2

我们观察到训练集、验证集和测试集中正样本边的数量之和不等于原始边的数量。这是因为,现在所用的Cora图是无向图,在统计原始边数量时,每一条边的正向与反向各统计了一次,训练集也包含边的正向与反向,但验证集与测试集都只包含了边的一个方向。

**为什么训练集要包含边的正向与反向,而验证集与测试集都只包含了边的一个方向?**这是因为,训练集用于训练,训练时一条边的两个端点要互传信息,只考虑一个方向的话,只能由一个端点传信息给另一个端点,而验证集与测试集的边用于衡量检验边预测的准确性,只需考虑一个方向的边即可。

2. 边预测图神经网络的构造

构造神经网络

import torch
from torch_geometric.nn import GCNConv

class Net(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Net, self).__init__()
        self.conv1 = GCNConv(in_channels, 128)
        self.conv2 = GCNConv(128, out_channels)

    def encode(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        return self.conv2(x, edge_index)

    def decode(self, z, pos_edge_index, neg_edge_index):
        edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
        return (z[edge_index[0]] * z[edge_index[1]]).sum(dim=-1)

    def decode_all(self, z):
        prob_adj = z @ z.t()
        return (prob_adj > 0).nonzero(as_tuple=False).t()

用于做边预测的神经网络主要由两部分组成:其一是编码(encode),它与我们前面介绍的节点表征生成是一样的;其二是解码(decode),它根据边两端节点的表征生成边为真的几率(odds)。decode_all(self, z)用于推理(inference)阶段,我们要对所有的节点对预测存在边的几率。

3. 边预测图神经网络的训练

定义单个epoch的训练过程

def get_link_labels(pos_edge_index, neg_edge_index):
    num_links = pos_edge_index.size(1) + neg_edge_index.size(1)
    link_labels = torch.zeros(num_links, dtype=torch.float)
    link_labels[:pos_edge_index.size(1)] = 1.
    return link_labels

def train(data, model, optimizer):
    model.train()

    neg_edge_index = negative_sampling(
        edge_index=data.train_pos_edge_index,
        num_nodes=data.num_nodes,
        num_neg_samples=data.train_pos_edge_index.size(1))
    def train(data, model, optimizer):
    model.train()

    neg_edge_index = negative_sampling(
        edge_index=data.train_pos_edge_index,
        num_nodes=data.num_nodes,
        num_neg_samples=data.train_pos_edge_index.size(1))
    
    # 作业三
    # train_neg_edge_set = set(map(tuple, neg_edge_index.T.tolist()))
    # val_pos_edge_set = set(map(tuple, data.val_pos_edge_index.T.tolist()))
    # test_pos_edge_set = set(map(tuple, data.test_pos_edge_index.T.tolist()))
    # if (len(train_neg_edge_set & val_pos_edge_set) > 0) or (len(train_neg_edge_set & test_pos_edge_set) > 0):
    #     print('wrong!')

    optimizer.zero_grad()
    z = model.encode(data.x, data.train_pos_edge_index)
    link_logits = model.decode(z, data.train_pos_edge_index, neg_edge_index)
    link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index).to(data.x.device)
    loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)
    loss.backward()
    optimizer.step()

    return loss

    optimizer.zero_grad()
    z = model.encode(data.x, data.train_pos_edge_index)
    link_logits = model.decode(z, data.train_pos_edge_index, neg_edge_index)
    link_labels = get_link_labels(data.train_pos_edge_index, neg_edge_index).to(data.x.device)
    loss = F.binary_cross_entropy_with_logits(link_logits, link_labels)
    loss.backward()
    optimizer.step()

    return loss

通常,存在边的节点对的数量往往少于不存在边的节点对的数量。我们在每一个epoch的训练过程中,都进行一次训练集负样本采样。采样到的样本数量与训练集正样本相同,但不同epoch中采样到的样本是不同的。这样做,我们既能实现类别数量平衡,又能实现增加训练集负样本的多样性。在负样本采样时,我们传递了train_pos_edge_index为参数,于是negative_sampling()函数只会在训练集中不存在边的节点对中采样。get_link_labels()函数用于生成完整训练集的标签。

注:在训练阶段,我们应该只见训练集,对验证集与测试集都是不可见的。所以我们没有使用所有的边,而是只用了训练集正样本边。

定义单个epoch验证与测试过程

@torch.no_grad()
def test(data, model):
    model.eval()

    z = model.encode(data.x, data.train_pos_edge_index)

    results = []
    for prefix in ['val', 'test']:
        pos_edge_index = data[f'{prefix}_pos_edge_index']
        neg_edge_index = data[f'{prefix}_neg_edge_index']
        link_logits = model.decode(z, pos_edge_index, neg_edge_index)
        link_probs = link_logits.sigmoid()
        link_labels = get_link_labels(pos_edge_index, neg_edge_index)
        results.append(roc_auc_score(link_labels.cpu(), link_probs.cpu()))
    return results

注:在验证与测试阶段,我们也应该只见训练集,对验证集与测试集都是不可见的。所以在验证与测试阶段,我们依然只用训练集正样本边。

运行完整的训练、验证与测试

def main():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    dataset = 'Cora'
    path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', dataset)
    dataset = Planetoid(path, dataset, transform=T.NormalizeFeatures())
    data = dataset[0]
    ground_truth_edge_index = data.edge_index.to(device)
    data.train_mask = data.val_mask = data.test_mask = data.y = None
    data = train_test_split_edges(data)
    data = data.to(device)

    model = Net(dataset.num_features, 64).to(device)
    optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)

    best_val_auc = test_auc = 0
    for epoch in range(1, 101):
        loss = train(data, model, optimizer)
        val_auc, tmp_test_auc = test(data, model)
        if val_auc > best_val_auc:
            best_val_auc = val_auc
            test_auc = tmp_test_auc
        print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}, Val: {val_auc:.4f}, '
              f'Test: {test_auc:.4f}')

    z = model.encode(data.x, data.train_pos_edge_index)
    final_edge_index = model.decode_all(z)


if __name__ == "__main__":
    main()

运行结果:

Epoch: 001, Loss: 0.6930, Val: 0.6675, Test: 0.6881
Epoch: 002, Loss: 0.6819, Val: 0.6647, Test: 0.6881
Epoch: 003, Loss: 0.7154, Val: 0.6736, Test: 0.6878
Epoch: 004, Loss: 0.6767, Val: 0.6912, Test: 0.7040
Epoch: 005, Loss: 0.6850, Val: 0.7226, Test: 0.7284
Epoch: 006, Loss: 0.6891, Val: 0.7569, Test: 0.7646
Epoch: 007, Loss: 0.6905, Val: 0.7218, Test: 0.7646
Epoch: 008, Loss: 0.6906, Val: 0.6770, Test: 0.7646
Epoch: 009, Loss: 0.6894, Val: 0.6618, Test: 0.7646
Epoch: 010, Loss: 0.6868, Val: 0.6597, Test: 0.7646
………
………
Epoch: 090, Loss: 0.4483, Val: 0.8941, Test: 0.8942
Epoch: 091, Loss: 0.4498, Val: 0.8932, Test: 0.8942
Epoch: 092, Loss: 0.4476, Val: 0.8931, Test: 0.8942
Epoch: 093, Loss: 0.4501, Val: 0.8955, Test: 0.8972
Epoch: 094, Loss: 0.4439, Val: 0.8975, Test: 0.8983
Epoch: 095, Loss: 0.4481, Val: 0.8981, Test: 0.8972
Epoch: 096, Loss: 0.4450, Val: 0.8979, Test: 0.8972
Epoch: 097, Loss: 0.4478, Val: 0.8971, Test: 0.8972
Epoch: 098, Loss: 0.4442, Val: 0.8993, Test: 0.9011
Epoch: 099, Loss: 0.4351, Val: 0.9013, Test: 0.9011
Epoch: 100, Loss: 0.4431, Val: 0.9014, Test: 0.9001

四、作业

  • 实践问题一:尝试使用PyG中的不同的网络层去代替GCNConv,以及不同的层数和不同的out_channels,来实现节点分类任务。

  • 实践问题二:在边预测任务中,尝试用torch_geometric.nn.Sequential容器构造图神经网络。

  • 思考问题三:如下方代码所示,我们以data.train_pos_edge_index为实际参数来进行训练集负样本采样,但这样采样得到的负样本可能包含一些验证集的正样本与测试集的正样本,即可能将真实的正样本标记为负样本,由此会产生冲突。但我们还是这么做,这是为什么?

    neg_edge_index = negative_sampling(
        edge_index=data.train_pos_edge_index,
        num_nodes=data.num_nodes,
        num_neg_samples=data.train_pos_edge_index.size(1))
    

1. 作业一

不同的网络层在上一节已经有过尝试,这里通过改变hidden_channels_list=[256, 128, 64]来观察模型节点分类效果的改变:

class GAT(torch.nn.Module):
    def __init__(self, num_features, hidden_channels_list, num_classes):
        super(GAT, self).__init__()
        torch.manual_seed(12345)
        hns = [num_features] + hidden_channels_list
        conv_list = []
        for idx in range(len(hidden_channels_list)):
            conv_list.append((GATConv(hns[idx], hns[idx+1]), 'x, edge_index -> x'))
            conv_list.append(ReLU(inplace=True),)

        self.convseq = Sequential('x, edge_index', conv_list)
        self.linear = Linear(hidden_channels_list[-1], num_classes)

    def forward(self, x, edge_index):
        x = self.convseq(x, edge_index)
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.linear(x)
        return x

model = GAT(num_features=dataset.num_features, hidden_channels_list=[200, 100], num_classes=dataset.num_classes).to(device)
print(model)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()

for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

模型输出(差别不大):

GAT(
  (convseq): Sequential(
    (0): GATConv(500, 256, heads=1)
    (1): ReLU(inplace=True)
    (2): GATConv(256, 128, heads=1)
    (3): ReLU(inplace=True)
    (4): GATConv(128, 64, heads=1)
    (5): ReLU(inplace=True)
  )
  (linear): Linear(in_features=64, out_features=3, bias=True)
)
# 训练过程省略
Test Accuracy: 0.7550

2. 作业二

torch_geometric.nn.Sequential容器来改写Net()

import torch
from torch_geometric.nn import GCNConv

class Net(torch.nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Net, self).__init__()
        conv_list = []
        conv_list.append((GCNConv(in_channelsin_channels, 128), 'x, edge_index -> x'))
        conv_list.append(ReLU(inplace=True),)
        conv_list.append((GCNConv(128, out_channels), 'x, edge_index -> x'))

        self.convseq = Sequential('x, edge_index', conv_list)

    def encode(self, x, edge_index):
        x = self.convseq(x, edge_index)
        return x
    
    def decode(self, z, pos_edge_index, neg_edge_index):
        edge_index = torch.cat([pos_edge_index, neg_edge_index], dim=-1)
        return (z[edge_index[0]] * z[edge_index[1]]).sum(dim=-1)
    
    def decode_all(self, z):
        prob_adj = z @ z.t()
        return (prob_adj > 0).nonzero(as_tuple=False).t()

3. 作业三

这一题没有思绪,可以参考作业排名里面有位同学的解释。

  • 负采样冲突样本数少,对模型的泛化能力没有很大影响?
  • 测试过程中更多的是关注正样本的准确度?
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用\[1\]:在C++中,数据结构是指一种组织和存储数据的方式。在这段代码中,使用了结构体来定义一个节点(node),节点包含了两个整数变量x和y。结构体中还重载了小于号运算符,用于比较节点的大小。主函数中使用了优先队列(priority_queue)来存储节点,并按照节点的x值从大到小进行排序。然后通过遍历优先队列,输出节点的x和y值。\[1\] 引用\[2\]:在C++中,vector是一种动态数组容器。它可以根据需要自动调整大小,并且支持多种构造函数。例如,可以使用默认构造函数创建一个空的vector,也可以使用拷贝构造函数将一个vector的元素拷贝给另一个vector。另外,还可以使用带有两个迭代器参数的构造函数,将一个区间内的元素拷贝给vector,或者使用带有一个整数参数和一个元素参数的构造函数,将指定数量的相同元素拷贝给vector。\[2\] 引用\[3\]:这段代码是一个关于图的遍历的例题。首先,根据输入的节点数量n和边的数量m,使用并查集来判断图是否联通。然后,统计图中奇点的数量,如果奇点的数量为0或者2,则存在欧拉回路。最后,根据判断结果输出相应的结果。\[3\] 综上所述,C++中的数据结构基本概念包括使用结构体来定义节点,使用优先队列来排序节点,使用vector来存储动态数组,以及使用并查集来判断图的连通性和欧拉回路的存在性。 #### 引用[.reference_title] - *1* *2* [C++之STL基础概念、容器、数据结构](https://blog.csdn.net/Pxx520Tangtian/article/details/126764518)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] - *3* [c++数据结构-图(详解附算法代码,一看就懂)](https://blog.csdn.net/m0_64036070/article/details/128737229)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值