3-1 独立任务最优调度问题
思路
F[i][j] = min(F[i-1][j-a[i]],F[i-1][j]+b[i])
参考大佬独立任务最优调度问题
代码
#include<bits/stdc++.h>
using namespace std;
int A[100],B[100];
int dp[100][10000];//dp[i][j]前i个作业中A机器花j分钟的时候B机器所花时间
int main(){
int n;
cin>>n;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++){
cin>>A[i];
}
for(int i=1;i<=n;i++){
cin>>B[i];
}
int sum=0;
for(int i=1;i<=n;i++){
sum+=A[i];
for(int j=0;j<=sum;j++){
dp[i][j]=dp[i-1][j]+B[i];//交给B来做
if(j>=A[i]) dp[i][j]=min(dp[i-1][j]+B[i],dp[i-1][j-A[i]]);//交给B还是交给A
}
}
//max(dp[n][i],i) 表示完成前n个作业A机器花i分钟 B机器花dp[n][i]分钟情况下,最迟完工时间
int ans=999999;
for(int i=0; i<=sum; i++)ans=min(ans,max(dp[n][i],i));
cout<<ans<<endl;
return 0;
}
3-3 石子合并问题
思路
和矩阵连乘很像,数组如下设置
因为是环形,所以上述数组拓展一倍i<n*2-r+1,首尾相接即可,依然求n堆石子的数量,所以
min1=min(min1,dpmin[i][i+n-1].score);
max1=max(max1,dpmax[i][i+n-1].score);
代码
#include<bits/stdc++.h>
using namespace std;
struct stu{
int sum=0;
int score=0;
};
stu dpmin[999][999],dpmax[999][999];
int main(){
int n,x;
cin>>n;
for(int i=1;i<=n;i++){
cin>>x;
dpmin[i][i].sum=dpmax[i][i].sum=x;
dpmin[i+n][i+n].sum=dpmax[i+n][i+n].sum=x;
}
//最小得分
for(int r=2;r<=n;r++){
for(int i=1;i<=n*2-r+1;i++){
int j=i+r-1;
dpmin[i][j].sum=dpmin[i][i].sum+dpmin[i+1][j].sum;
dpmin[i][j].score=dpmin[i][i].score+dpmin[i+1][j].score+dpmin[i][j].sum;
for(int k=i+1;k<j;k++){
int t=dpmin[i][k].score+dpmin[k+1][j].score+dpmin[i][j].sum;
if(t<dpmin[i][j].score) dpmin[i][j].score=t;
}
}
}
cout<<"最小值:";
int min1=999999;
for(int i=1;i<=n;i++){
min1=min(min1,dpmin[i][i+n-1].score);
}
cout<<min1<<endl;
//最大得分
for(int r=2;r<=n;r++){
for(int i=1;i<=n*2-r+1;i++){
int j=i+r-1;
dpmax[i][j].sum=dpmax[i][i].sum+dpmax[i+1][j].sum;
dpmax[i][j].score=dpmax[i][i].score+dpmax[i+1][j].score+dpmax[i][j].sum;
for(int k=i+1;k<j;k++){
int t=dpmax[i][k].score+dpmax[k+1][j].score+dpmax[i][j].sum;
if(t>dpmax[i][j].score) dpmax[i][j].score=t;
}
}
}
cout<<"最大值:";
int max1=0;
for(int i=1;i<=n;i++){
max1=max(max1,dpmax[i][i+n-1].score);
}
cout<<max1;
return 0;
}
3-8 最小m段和问题
思路
参考大佬最小m段和问题(动态规划)
代码
#include<bits/stdc++.h>
using namespace std;
int dp[101][101];//dp[i][j]是指存储长度为i,分j段后子序列和最大值的最小值
int main(){
int n,m;
cin>>n>>m;
int s[n+1]={0};
for(int i=1;i<=n;i++){
cin>>s[i];
}
for(int i=1;i<=n;i++){
dp[i][1]=dp[i-1][1]+s[i];
}
for(int i=1;i<=n;i++){
for(int j=2;j<=m;j++){
int min1=999999;
for(int k=1;k<=i;k++){//分段的最后一段子序列的开始下标
int temp=max(dp[k][j-1],dp[i][1]-dp[k][1]);
//dp[k][j-1]是前面j-1段子序列的和的最大值的最小值
//dp[i][1]-dp[k][1]是后面一段子序列和的最大值
if(temp<min1) min1=temp;
}
dp[i][j]=min1;
}
}
cout<<dp[n][m]<<endl;
return 0;
}
3-13 最大k乘积问题
输入
4 2
1234
输出
192
思路
3-8改一改就是3-13,仔细读题,区分两题不同之处
代码
#include<bits/stdc++.h>
using namespace std;
long long dp[101][101];
int main()
{
int n,k;
cin>>n>>k;
string s,s1;
long long num;
cin>>s;
dp[0][1]=1;
for(int i=1;i<=n;i++){
s1=s.substr(0,i);
num=stoi(s1);
dp[i][1]=num;
}
for(int i=1;i<=n;i++){//i个数
for(int j=2;j<=k;j++){//划分k段
long long max1=-1;
for(int q=1;q<i;q++){//分段的最后一段子序列的开始下标
s1=s.substr(q,i-q);
num=stoi(s1);//分段的最后一段子序列的乘积
int temp=dp[q][j-1]*num;
if(temp>max1) max1=temp;
}
dp[i][j]=max1;
}
}
cout<<dp[n][k]<<endl;
return 0;
}