算法设计与分析——第三章课后题

3-1 独立任务最优调度问题

在这里插入图片描述
思路

F[i][j] = min(F[i-1][j-a[i]],F[i-1][j]+b[i])

参考大佬独立任务最优调度问题
代码

#include<bits/stdc++.h>
using namespace std;
int A[100],B[100];
int dp[100][10000];//dp[i][j]前i个作业中A机器花j分钟的时候B机器所花时间 
int main(){
	int n;
	cin>>n;
	memset(dp,0,sizeof(dp));
	for(int i=1;i<=n;i++){
		cin>>A[i];
	}
	for(int i=1;i<=n;i++){
		cin>>B[i];
	}
	int sum=0;
	for(int i=1;i<=n;i++){
		sum+=A[i];
		for(int j=0;j<=sum;j++){
			dp[i][j]=dp[i-1][j]+B[i];//交给B来做 
			if(j>=A[i]) dp[i][j]=min(dp[i-1][j]+B[i],dp[i-1][j-A[i]]);//交给B还是交给A 
		} 
	}
	//max(dp[n][i],i) 表示完成前n个作业A机器花i分钟 B机器花dp[n][i]分钟情况下,最迟完工时间 
	int ans=999999;
    for(int i=0; i<=sum; i++)ans=min(ans,max(dp[n][i],i));
    cout<<ans<<endl;
    return 0;
} 

3-3 石子合并问题

在这里插入图片描述
思路
和矩阵连乘很像,数组如下设置
在这里插入图片描述
因为是环形,所以上述数组拓展一倍i<n*2-r+1,首尾相接即可,依然求n堆石子的数量,所以

min1=min(min1,dpmin[i][i+n-1].score);
max1=max(max1,dpmax[i][i+n-1].score);

代码

#include<bits/stdc++.h>
using namespace std;
struct stu{
	int sum=0;
	int score=0;
};
stu dpmin[999][999],dpmax[999][999];
int main(){
	int n,x;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>x;
		dpmin[i][i].sum=dpmax[i][i].sum=x;
		dpmin[i+n][i+n].sum=dpmax[i+n][i+n].sum=x;	
	} 
	//最小得分
	for(int r=2;r<=n;r++){
		for(int i=1;i<=n*2-r+1;i++){
			int j=i+r-1;
			dpmin[i][j].sum=dpmin[i][i].sum+dpmin[i+1][j].sum;
			dpmin[i][j].score=dpmin[i][i].score+dpmin[i+1][j].score+dpmin[i][j].sum;
			for(int k=i+1;k<j;k++){
				int t=dpmin[i][k].score+dpmin[k+1][j].score+dpmin[i][j].sum;
				if(t<dpmin[i][j].score) dpmin[i][j].score=t;
			}
		}
	} 
	cout<<"最小值:";
	int min1=999999;
	for(int i=1;i<=n;i++){
		min1=min(min1,dpmin[i][i+n-1].score);
	}
	cout<<min1<<endl;
	//最大得分
	for(int r=2;r<=n;r++){
		for(int i=1;i<=n*2-r+1;i++){
			int j=i+r-1;
			dpmax[i][j].sum=dpmax[i][i].sum+dpmax[i+1][j].sum;
			dpmax[i][j].score=dpmax[i][i].score+dpmax[i+1][j].score+dpmax[i][j].sum;
			for(int k=i+1;k<j;k++){
				int t=dpmax[i][k].score+dpmax[k+1][j].score+dpmax[i][j].sum;
				if(t>dpmax[i][j].score) dpmax[i][j].score=t;
			}
		}
	} 
	cout<<"最大值:"; 
	int max1=0;
	for(int i=1;i<=n;i++){
		max1=max(max1,dpmax[i][i+n-1].score);
	}
	cout<<max1;
	return 0;
}

3-8 最小m段和问题

在这里插入图片描述
思路
参考大佬最小m段和问题(动态规划)
代码

#include<bits/stdc++.h>
using namespace std;
int dp[101][101];//dp[i][j]是指存储长度为i,分j段后子序列和最大值的最小值 
int main(){
	int n,m;
	cin>>n>>m;
	int s[n+1]={0};
	for(int i=1;i<=n;i++){
		cin>>s[i];
	}
	for(int i=1;i<=n;i++){
		dp[i][1]=dp[i-1][1]+s[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=2;j<=m;j++){
			int min1=999999;
			for(int k=1;k<=i;k++){//分段的最后一段子序列的开始下标 
				int temp=max(dp[k][j-1],dp[i][1]-dp[k][1]);
				//dp[k][j-1]是前面j-1段子序列的和的最大值的最小值
				//dp[i][1]-dp[k][1]是后面一段子序列和的最大值 
				if(temp<min1) min1=temp;
			}
			dp[i][j]=min1;
		}
	}
	cout<<dp[n][m]<<endl; 
    return 0;
} 

3-13 最大k乘积问题

在这里插入图片描述
输入

4 2
1234 

输出

192

思路
3-8改一改就是3-13,仔细读题,区分两题不同之处
代码

#include<bits/stdc++.h>
using namespace std;
long long dp[101][101];
int main()
{
    int n,k;
    cin>>n>>k;
    string s,s1;
    long long num;
    cin>>s;
    dp[0][1]=1;
    for(int i=1;i<=n;i++){
    	s1=s.substr(0,i);
    	num=stoi(s1);
    	dp[i][1]=num;
	} 
    for(int i=1;i<=n;i++){//i个数 
    	for(int j=2;j<=k;j++){//划分k段 
    		long long max1=-1;
    		for(int q=1;q<i;q++){//分段的最后一段子序列的开始下标 
    			s1=s.substr(q,i-q);
    			num=stoi(s1);//分段的最后一段子序列的乘积    		
    			int temp=dp[q][j-1]*num;	   			
    			if(temp>max1) max1=temp;
			}
			dp[i][j]=max1;
		}
	}
	cout<<dp[n][k]<<endl;
    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值