Way_V
码龄5年
关注
提问 私信
  • 博客:2,424
    2,424
    总访问量
  • 1
    原创
  • 2,261,865
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2020-02-15
博客简介:

m0_46335326的博客

查看详细资料
个人成就
  • 获得1次点赞
  • 内容获得0次评论
  • 获得13次收藏
创作历程
  • 4篇
    2020年
成就勋章
TA的专栏
  • Pytorch - 机器翻译
    1篇
  • Pytorch-情感分析
    3篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

473人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

NLP入门-文本翻译系列教程-Sequence to Sequence Learning with Neural Networks学习笔记

1 介绍在本系列中,我们将使用PyTorch和TorchText构建一个机器学习模型,从一个序列到另一个序列。 这将在德语到英语的翻译中完成,但是模型可以应用于涉及从一个序列到另一个序列的任何问题。(本篇论文“Sequence to Sequence Learning with Neural Networks ”)最常见的序列到序列(seq2seq)模型是编码器-解码器模型,通常使用递归神经网络(RNN)将源(输入)语句编码为单个向量。 在本笔记中,我们将将此单个向量称为上下文向量。 我们可以将上下文向
原创
发布博客 2020.08.11 ·
647 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

NLP入门-情感分析系列教程-A Closer Look at Word Embeddings学习笔记

之前的教程中非常简要地介绍了如何使用词嵌入(也称为词向量),附录中将仔细研究这些嵌入原理。Embedding层将一个稀疏的one-hot向量转变为维度更低的稠密向量,出现在相似上下文中词的词向量空间是接近的,例如: "I purchased some items at the shop"和"I purchased some items at the store"两句中 'shop' 和 'store'在向量空间中是相邻的。在PyTorch中使用nn.Embedding layer将 [句长, 批处理.
翻译
发布博客 2020.07.29 ·
246 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

NLP入门-情感分析系列教程-Faster Sentiment Analysis学习笔记

本系列来源Github自学使用翻译在之前笔记中所使用的技术准确率达到84%左右,本文将使用一个训练速度更快,参数更少的模型。来自于论文Bag of Tricks for Efficient Text Classification1 - 数据预处理FastText论文核心观念之一是使用n-gram将其附加到句子的末尾:例如bi-gram : "how are you ?"使用 bi-grams 为:"how are", "are you" "you ?".#一个bi-gram函数的演示def .
翻译
发布博客 2020.07.24 ·
606 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

NLP入门-情感分析系列教程- Simple Sentiment Analysis学习笔记

本系列来源Github自学使用翻译原文地址:pytorch-sentiment-analysisSimple Sentiment Analysis在第一篇教程中不关心实验结果好坏,只介绍基本概念,是读者对情感分析有初步了解。使用PyTorch和TorchText构建模型用来检测一句话情感(检测句子是持1肯定或0否定态度)本文使用IMDB电影评论数据集。1 - 介绍RNN网络简单介绍输入:一句话(单词序列)X={x1,x2,......xt}该序列依次输入模型(一次输入一个)得到响应.
翻译
发布博客 2020.07.23 ·
926 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏