如何在pycharm中启动tensorboard

如何在pycharm中启动tensorboard
在pycharm中训练完成模型,想看tensorboard,可用下列方法:
1.先定义tensorboard
在这里插入图片描述
2.找到tensorboard的log_dir,即这里的graph文件夹的目录,我们将tensorboard文件装在其目录下:

在这里插入图片描述

打开终端查看:用cd命令,找到其对应的文件夹 下,输入命令tensorboard–logdir=graph,即可获得6006地址,复制在浏览器中打开即可。

在这里插入图片描述
up谷歌浏览器打不开的话把网址前面的用户名改成127.0.0.1就行了
在这里插入图片描述

Tensorboard详解
该类在存放在keras.callbacks模块中。拥有许多参数,主要的参数如下:

1、log_dir: 用来保存Tensorboard的日志文件等内容的位置

2、histogram_freq: 对于模型中各个层计算激活值和模型权重直方图的频率。

3、write_graph: 是否在 TensorBoard 中可视化图像。

4、write_grads: 是否在 TensorBoard 中可视化梯度值直方图。

5、batch_size: 用以直方图计算的传入神经元网络输入批的大小。

6、write_images: 是否在 TensorBoard中将模型权重以图片可视化。

7、update_freq: 常用的三个值为’batch’ 、 ‘epoch’ 或 整数。当使用 ‘batch’ 时,在每个 batch 之后将损失和评估值写入到 TensorBoard 中。 ‘epoch’ 类似。如果使用整数,会在每一定个样本之后将损失和评估值写入到 TensorBoard 中。

默认值如下:
在这里插入图片描述
使用例子
以手写体为例子,我们打开histogram_freq和write_grads,也就是在Tensorboard中保存权值直方图和梯度直方图。
打开CMD,利用tensorboard --logdir=logs生成tensorboard观测网页。
1、loss和acc
在这里插入图片描述
2、权值直方图
在这里插入图片描述

3、梯度直方图
在这里插入图片描述
实现代码
import numpy as np

from keras.layers import Input, Dense, Dropout, Activation,Conv2D,MaxPool2D,Flatten
from keras.datasets import mnist
from keras.models import Model
from keras.utils import to_categorical
from keras.callbacks import TensorBoard

if name==“main”:
(x_train,y_train),(x_test,y_test) = mnist.load_data()

x_train=np.expand_dims(x_train,axis=-1)
x_test=np.expand_dims(x_test,axis=-1)
y_train=to_categorical(y_train,num_classes=10)
y_test=to_categorical(y_test,num_classes=10)
batch_size=128
epochs=10

inputs = Input([28,28,1])
x = Conv2D(32, (5,5), activation='relu')(inputs)
x = Conv2D(64, (5,5), activation='relu')(x)   
x = MaxPool2D(pool_size=(2,2))(x)
x = Flatten()(x)    
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(10, activation='softmax')(x)

model = Model(inputs,x)

model.compile(loss='categorical_crossentropy', optimizer="adam",metrics=['acc']) 
Tensorboard= TensorBoard(log_dir="./model", histogram_freq=1,write_grads=True)
history=model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, shuffle=True, validation_split=0.2,call

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值