TensorBoard 是一个由 TensorFlow 提供的可视化工具,不过它也可以与其他深度学习框架(如 PyTorch)集成使用。它可以将训练过程中的各种数据以直观的图表形式展示出来,帮助开发者更好地理解、调试和优化深度学习模型。TensorBoard是一个基于浏览器的观察器,可以监视你模型的训练全过程,这里需要注意的是,我们不需要联网就能打开这个观察器,这只是个本地服务
下载
在Anaconda Prompt的pytorch环境中输入 pip install tensorboard
使用
先在代码部分写好的右键重新运行
出现logs文件(自己设置的命名随意)即成功
在PyCharm的终端中输入tensorboard --logdir "文件夹名" 弹出地址
进入链接成功
注意不可以是 tensorboard --logdir =文件夹名
否则会出现
Probable causes:
- You haven’t written any data to your event files.
- TensorBoard can’t find your event files.
使用Tensorboard打开数据集图片
在训练深度学习模型时,我们通常需要监控一些标量指标,如训练损失、验证准确率等。SummaryWriter 可以方便地记录这些标量数据随训练步数或训练轮数的变化情况。
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
'''SummaryWriter 是 PyTorch 中 torch.utils.tensorboard 模块提供的一个类,
它的主要作用是将各种数据(如训练损失、模型参数、图像等)写入到 TensorBoard 日志文件中,
以便后续使用 TensorBoard 工具进行可视化分析。'''
from torchvision import transforms
img_path="dataset/hymenoptera_data/train/ants/0013035.jpg" #相对路径
img =Image.open(img_path) #获取img
writer=SummaryWriter("logs")
tensor_trans=transforms.ToTensor() #借用transforms中的类进行创建
tensor_img=tensor_trans(img) #将img转化为tensor_img形式
writer.add_image("Tensor_img",tensor_img)
writer.close()
在Pycharm终端输入 tensorboard --logdir "logs"
进入 tensorboard完成显示