Tensorboard安装、使用、常见问题

   TensorBoard 是一个由 TensorFlow 提供的可视化工具,不过它也可以与其他深度学习框架(如 PyTorch)集成使用。它可以将训练过程中的各种数据以直观的图表形式展示出来,帮助开发者更好地理解、调试和优化深度学习模型。TensorBoard是一个基于浏览器的观察器,可以监视你模型的训练全过程,这里需要注意的是,我们不需要联网就能打开这个观察器,这只是个本地服务

下载

在Anaconda Prompt的pytorch环境中输入 pip install tensorboard

使用

先在代码部分写好的右键重新运行

出现logs文件(自己设置的命名随意)即成功

 在PyCharm的终端中输入tensorboard --logdir  "文件夹名"      弹出地址


进入链接成功

 注意不可以是  tensorboard --logdir =文件夹名  

    否则会出现 

    Probable causes:

    • You haven’t written any data to your event files.
    • TensorBoard can’t find your event files.

     使用Tensorboard打开数据集图片

         在训练深度学习模型时,我们通常需要监控一些标量指标,如训练损失、验证准确率等。SummaryWriter 可以方便地记录这些标量数据随训练步数或训练轮数的变化情况。

    ​
    from PIL import Image
    from torch.utils.tensorboard import SummaryWriter
    '''SummaryWriter 是 PyTorch 中 torch.utils.tensorboard 模块提供的一个类,
    它的主要作用是将各种数据(如训练损失、模型参数、图像等)写入到 TensorBoard 日志文件中,
    以便后续使用 TensorBoard 工具进行可视化分析。'''
    from torchvision import transforms
    img_path="dataset/hymenoptera_data/train/ants/0013035.jpg"  #相对路径
    img =Image.open(img_path) #获取img
    writer=SummaryWriter("logs")
    tensor_trans=transforms.ToTensor() #借用transforms中的类进行创建
    tensor_img=tensor_trans(img) #将img转化为tensor_img形式
    writer.add_image("Tensor_img",tensor_img)
    writer.close()
    
    ​

    在Pycharm终端输入   tensorboard --logdir "logs"

     进入 tensorboard完成显示

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    玛卡巴卡ldf

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值