【算法】解题总结:剑指Offer 15 反转链表、剑指Offer 21 栈的压入弹出序列

JZ15 反转链表

(中等)

题目

描述
输入一个链表,反转链表后,输出新链表的表头。

示例1
输入:
{1,2,3}
返回值:
{3,2,1}

思路

这也是一道经典的链表题目,借助栈结构便可以实现,我们遍历链表中的结点,并且按顺序压入栈中(注意,因为链表中的结点都有 next 属性值,我们应自己去创建一个等 val 值的结点,而不能直接用链表中的结点),之后我们创建一个辅助用的头结点,将栈中的结点出栈,并加入到头结点之后,这样,由于栈结构先进后出的特点,我们最终得到新的链表自然就为原链表的逆序链表。 当想清楚主要思路后,也要考虑好特殊情况,如参数 head 为 null 时,我们需要返回 null,使代码有较强的健壮性,当传入的链表只有一个结点时,那么链表的反转也还是为自身,也就是此结点。

实现

public class JZ15反转链表 {
    public ListNode ReverseList(ListNode head) {
        if (head == null || head.next == null) {
            return head;
        }

        Stack<ListNode> stack = new Stack<ListNode>();
        while (head != null) {
            stack.push(new ListNode(head.val));
            head = head.next;
        }
        ListNode newHead = new ListNode(-1);
        ListNode temp = newHead;
        while (!stack.isEmpty()) {
            temp.next = stack.pop();
            temp = temp.next;
        }
        return newHead.next;
    }
}

在这里插入图片描述

JZ21 栈的压入、弹出序列

(中等)

题目

描述
输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序。假设压入栈的所有数字均不相等。例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压栈序列对应的一个弹出序列,但4,3,5,1,2就不可能是该压栈序列的弹出序列。(注意:这两个序列的长度是相等的)

示例
输入:
[1,2,3,4,5],[4,3,5,1,2]
返回值:
false

思路

这里直接用官方题解中的图,也是借助一个辅助栈来实现,题解十分通俗易懂,如下图:

下图来源
在这里插入图片描述
可能代码中唯一不好理解的地方,是这里:
在这里插入图片描述
这是在当 pushA[i] = popA[j] 时,说明这个元素是放入栈中立马弹出,所以,++i, ++j,从而直接略过这个元素的进栈和出栈即可,而又因为当前 pushA 数组中的的 i 值不一定再是正好对应栈顶元素,而可能在这个 i 元素入栈之前也执行了出栈,而且不一定只是 1 次,因此,便需要直接利用 top 方法取得栈顶元素,并使其与当前出栈元素比较,若相等,则让辅助栈的栈顶元素出栈,并让出栈数组右移一个下标即可,再进行判断,直到当前出栈的不是当前栈顶或是当前栈已经为空,也就是进栈的元素都已出栈。

实现

public class JZ21栈的压入弹出序列 {
    public boolean IsPopOrder(int [] pushA,int [] popA) {
        Stack<Integer> stack = new Stack<Integer>();
        int i = 0, j = 0;

        while (i < pushA.length) {
            if (pushA[i] != popA[j]) {
                stack.push(pushA[i]);
                i++;
            } else { //当 pushA[i] = popA[j]
                i++; j++;
                while (!stack.isEmpty() && stack.peek() == popA[j]) {
                    stack.pop();
                    j++;
                }
            }
        }

        return stack.isEmpty();
    }
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超周到的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值