网络测试与分析 第一讲

第一讲:网络测试概述及原理

网络测试的必要性

线缆,光纤品质问题,不断增加的网络用户,网络拥塞,网络崩溃,网站攻击,网络设备超负荷运行

网络测试的分类

测试方式的不同:
1.使用测试设备单独对网络设备进行测试(单品测试)
2.将网络设备放在具体的网络环境中进行测试
根据测试目的:
功能测试:主要是对设备的接口、通信协议、数据包转发等多方面的功能进行测试,以验证产品所标称支持的功能是否满足标准或能正常实施。
功能测试分为两种:
积极测试:积极地发现网络设备或网络的问题,以帮助生产商或研发者发现问题,为设备或网络的改进提供证据。
消极测试:通过引入损伤的方式给一个稳定的设备或网络造成伤害,以测试一个设备或网络对于灾难的抵抗能力。
**设备性能测试:**对设备的基本性能的验证,如设备的基本转发性能,协议处理性能
**协议测试:**包括一致性测试互操作性测试
负载测试: 用于确定在各种负载下系统的性能,目标是测试当负载逐渐增加时,系统各项性能指标的变化情况。
**压力测试:**通过确定一个系统的瓶颈或者不能接受的性能点,来获得系统能提供的最大服务级别的测试。

网络测试的一般规则

从下往上看:物理层向网络应用层看
从上往下看:网络应用层向物理层
一般都是从下往上看,只有作为基础的下层是完好的,上层测试才有意义

网络测试的标准

IETF成立基准方法学工作:RFC文档

网络测试的发展

第一阶段:网络测试仅限于验证网络设备的基本功能
第二阶段:发展的黄金时期,形成了比较完整的体系,网络的下三层连通、匹配和性能问题成为网络维护中故障的主要来源
第三阶段:
(1)测试对象从网络层向应用层测试过渡。
(2)测试重点将转向稳定性和可靠性测试。
(3)网络的安全性测试得到重视。
(4)光纤被大量采用,促进了光测试设备的发展。
(5)网络终端数量的不断扩容带动了无线测试设备的发展。

国内开始于1998年
网络测试重点:
(1)测试应用才是网络测试的真正意义所在
(2)可靠性和安全性测试

网络测试的工具集

1.物理电缆分析仪:万用表,电缆测试仪(检测线路通不通),示波器,时间反射仪
2.网络运行模拟工具
3.网络测试仪

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 支持向量机非线性回归通用MATLAB程序解析 #### 一、概述 本文将详细介绍一个基于MATLAB的支持向量机(SVM)非线性回归的通用程序。该程序采用支持向量机方法来实现数据的非线性回归,并通过不同的核函数设置来适应不同类型的数据分布。此外,该程序还提供了数据预处理的方法,使得用户能够更加方便地应用此程序解决实际问题。 #### 二、核心功能与原理 ##### 1. 支持向量机(SVM) 支持向量机是一种监督学习模型,主要用于分类和回归分析。对于非线性回归任务,SVM通过引入核技巧(kernel trick)将原始低维空间中的非线性问题转换为高维空间中的线性问题,从而实现有效的非线性建模。 ##### 2. 核函数 核函数的选择直接影响到模型的性能。本程序内置了三种常用的核函数: - **线性核函数**:`K(x, y) = x'y` - **多项式核函数**:`K(x, y) = (x'y + 1)^d` - **径向基函数(RBF)**:`K(x, y) = exp(-γ|x - y|^2)` 其中RBF核函数被广泛应用于非线性问题中,因为它可以处理非常复杂的非线性关系。本程序默认使用的是RBF核函数,参数`D`用于控制高斯核函数的宽度。 ##### 3. 数据预处理 虽然程序本身没有直接涉及数据预处理的过程,但在实际应用中,对数据进行适当的预处理是非常重要的。常见的预处理步骤包括归一化、缺失值处理等。 ##### 4. 模型参数 - **Epsilon**: ε-insensitive loss function的ε值,控制回归带宽。 - **C**: 松弛变量的惩罚系数,控制模型复杂度与过拟合的风险之间的平衡。 #### 三、程序实现细节 ##### 1. 函数输入与输出 - **输入**: - `X`: 输入特征矩阵,维度为(n, l),其中n是特征数量,l是样本数量。 - `Y`: 目标值向量,长度为l。 - `Epsilon`: 回归带宽。 - `C`: 松弛变量的惩罚系数。 - `D`: RBF核函数的参数。 - **输出**: - `Alpha1`: 正的拉格朗日乘子向量。 - `Alpha2`: 负的拉格朗日乘子向量。 - `Alpha`: 拉格朗日乘子向量。 - `Flag`: 标记向量,表示每个样本的类型。 - `B`: 偏置项。 ##### 2. 核心代码解析 程序首先计算所有样本间的核矩阵`K`,然后构建二次规划问题并求解得到拉格朗日乘子向量。根据拉格朗日乘子的值确定支持向量,并计算偏置项`B`。 - **核矩阵计算**:采用RBF核函数,通过`exp(-(sum((xi-xj).^2)/D))`计算任意两个样本之间的相似度。 - **二次规划**:构建目标函数和约束条件,使用`quadprog`函数求解最小化问题。 - **支持向量识别**:根据拉格朗日乘子的大小判断每个样本是否为支持向量,并据此计算偏置项`B`。 #### 四、程序扩展与优化 - **多核函数支持**:可以通过增加更多的核函数选项,提高程序的灵活性。 - **自动调参**:实现参数自动选择的功能,例如通过交叉验证选择最优的`Epsilon`和`C`值。 - **并行计算**:利用MATLAB的并行计算工具箱加速计算过程,特别是当样本量很大时。 #### 五、应用场景 该程序适用于需要进行非线性回归预测的场景,如经济预测、天气预报等领域。通过调整核函数和参数,可以有效应对各种类型的非线性问题。 ### 总结 本程序提供了一个支持向量机非线性回归的完整实现框架,通过灵活的核函数设置和参数调整,能够有效地处理非线性问题。对于需要进行回归预测的应用场景,这是一个非常实用且强大的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值