Q learning小结

Q    L e a r n i n g Q\;Learning QLearning

申明

这里是对 Q    L e a r n i n g Q\;Learning QLearning算法的一些总结,主要是基于莫烦python教学视频,以及关于阅读其他博客的总结,所有引用都会加上出处。

伪代码

在这里插入图片描述
步骤如下:

1.初始化一个 Q ( s , a ) Q(s,a) Q(s,a)的表格
2.在每个回合都对 Q ( s , a ) Q(s,a) Q(s,a)进行如下更新
    从状态0开始
    如果未达到截止状态:
        2.1选择一个策略 a a a
        2.2得到采取策略 a a a对应的奖励 r r r和到达的下一状态 s ′ s^{'} s
        2.3更新 Q ( s , a ) Q(s,a) Q(s,a)
        2.4当前状态变为 s ′ s^{'} s

说明

  • 在2.1中采用 ε − g r e e d y \varepsilon - greedy εgreedy方法选择策略,如 ε = \varepsilon= ε= 0.9,则按照90%的概率利用最优Q值选择行为,10%的概率随机选择行为。
  • 在2.3中,更新函数还可以等价写为
    Q ( s , a ) ← ( 1 − α ) Q ( s , a ) + α [ r + γ m a x a ′ Q ( s ′ , a ′ ) ] Q(s,a)←\color{red}{(1-\alpha)Q(s,a)}+\color{green}{ \alpha[r+\gamma max_{a^{'}}Q(s^{'},a{'})]} Q(s,a)1αQ(s,a)+α[r+γmaxaQ(s,a)] (1)
    其中红色的部分是已经存在于Q表中的估计值,绿色的部分是现实中马上获得的奖励和下一个状态的价值[1]
  • 公式(1)中 α \alpha α是学习率,决定了新获得样本信息覆盖之前掌握到的信息比率,通常设为比较小的值,保证学习过程的稳定,同时确保收敛性, α \alpha α越大,原来训练结果的保留就越少。
  • 公式(1)中 γ m a x a ′ Q ( s ′ , a ′ ) \gamma max_{a^{'}}Q(s^{'},a{'}) γmaxaQ(s,a)是贝尔曼方程,该方程式 Q L e a r n i n g QLearning QLearning的重要基石,表示在下一个状态 s ′ s^{'} s下采取某个动作可获得的最大价值。我们可以把他拆开来看:在这里插入图片描述
    其中, γ \gamma γ即衰减系数discount factor,这个参数决定了未来奖励在学习中的重要性,可以看出,如果 γ = 0 \gamma = 0 γ=0,模型将学习不到任何未来的奖励信息,变得短视,只关注当前的利益;如果 γ > = 1 \gamma>=1 γ>=1,期望价值被不断累加并没有衰减,这样期望价值可能会发散。 γ \gamma γ一般设为一个比1稍微小的数[2]
  • 到这里需要提醒大家, Q l e a r n i n g Qlearning Qlearning中的决策 a a a 的选择完全基于 Q Q Q表中的最大值所对应的动作,在2.1中动作的选择已经完成,并已经确定出下一个状态 s ′ s^{'} s。2.3中通过贝尔曼方程更新 Q Q Q表的操作只对之后的决策起作用,这里 a ′ a^{'} a不一定会是下一个状态所执行的动作, a ′ a^{'} a Q l e a r n i n g Qlearning Qlearning中实际并没有发挥作用,所以说 Q l e a r n i n g Qlearning Qlearning是离线学习。(对应着在线学习Sarsa)

例子

该例子来源于莫烦的课程[3]

题目描述
在-----T中寻找T的位置,随机产生在-的位置,到达T即为成功。

代码

import numpy as np
import pandas as pd
import time

np.random.seed(2)   #产生伪随机数列

# 公共变量
N_STATES = 6   # the length of the 1dimen
ACTIONS = [0,1]  # available actions  left:0 right:1
EPSILON = 0.9    # greedy police
ALPHA = 0.1      # learning rate
LAMBDA = 0.9     # discount factor
MAX_EPISODES = 13   # maximum episodes 这里只训练13次
FRESH_TIME = 0.3    #fresh time for one move

def build_q_table(n_states, actions):
    table = pd.DataFrame(
        np.zeros((n_states, len(actions))), #q_table initial values
        columns = actions,      #actions's name
    )
    #print(table)
    return table

def choose_action(state, q_table):
    #This is how to choose an action
    state_actions = q_table.iloc[state,:]
    if(np.random.uniform() > EPSILON) or (state_actions.all()==0):  #act non-greedy
        action_name = np.random.choice(ACTIONS)
    else:   #act greedy
        action_name = state_actions.argmax()
    return action_name

def get_env_feedback(S,A):
    #This is how agent will interact with the environment
    if A== 1: #move right
        if S == N_STATES -2:    #terminate
            S_ = 'terminal'     #S_表示下一个状态
            R = 1
        else:
            S_ = S + 1
            R = 0
    else:
        R = 0
        if S == 0:
            S_ = S #reach the wall
        else:
            S_ = S - 1
    return S_,R

def update_env(S, episode, step_counter):
    #This is how environment be updated
    env_list = ['-']*(N_STATES-1)+['T']     #'---------T' our environment
    if S == 'terminal':
        interaction = 'Episode %s: total_steps = %s' % (episode+1,step_counter)
        print('\r{}'.format(interaction), end='')
        time.sleep(2)
        print('\r                                  ', end='')
    else:
        env_list[S] = 'o'
        interaction = ''.join(env_list)
        print('\r{}'.format(interaction),end='')
        time.sleep(FRESH_TIME)

def rl():
    #main part of RL loop
    q_table = build_q_table(N_STATES, ACTIONS)
    for episode in range(MAX_EPISODES):
        step_counter = 0
        S = 0
        is_terminated = False
        update_env(S,episode,step_counter)
        while not is_terminated:
            A = choose_action(S,q_table)
            S_,R = get_env_feedback(S,A) #take action & get next state
            q_predict = q_table.iloc[S,A]
            if S_ != 'terminal':
                q_target = R + LAMBDA * q_table.iloc[S_, :].max()
            else:
                q_target = R  #next state is terminal
                is_terminated = True #terminate this episode

            q_table.iloc[S, A] += ALPHA * (q_target - q_predict) #update
            S = S_ #move to next state

            update_env(S, episode, step_counter+1)
            step_counter += 1
    return q_table

if __name__ == "__main__":
    q_table = rl()
    print('\r\nQ-table:\n')
    print(q_table)

说明
之前教程里的代码在取dataframe中元素时用的是q_table.ix(),该用法在新版pandas中不兼容,这里我采用了q_table.iloc(数字,数字),并把列坐标[‘left’,‘right’]改成了[0,1]以适应iloc的用法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值