分治法解决棋盘覆盖问题

分治法解决棋盘覆盖问题

问题描述:

在一个2k×2k(k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中出现的位置有4k中情形,因而有4k中不同的棋盘。棋盘覆盖问题要求用下图所示的4中不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何两个L型骨牌不得重复覆盖

在这里插入图片描述

算法设计:

使用分治策略。在一个2k *2k的棋盘中,当k大于0时,可以将棋盘分割成4个2k-1*2k-1子棋盘。如图所示:

在这里插入图片描述

特殊的方格位于4个较小的棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘化为特殊棋盘,可以用一个L型骨牌覆盖这三个较小棋盘汇合处,这三个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原来的问题简化成了4个更小规模的棋盘覆盖问题。递归的使用这种分割,直至棋盘简化为1*1的棋盘。

代码实现:

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define MAX 32767
void initChess(int size);
void ChessBoard(int tr,int tc,int dr,int dc,int size);
void printChess(int size);
bool isLog2(int n);
int **Board;//棋盘,用于记录覆盖的顺序 
int tile=1;//标记第几次覆盖 

int main(){
	int size;
	printf("请输入棋盘的大小,棋盘大小应为2^k(k>0)\n"); 
	scanf("%d",&size);
	//判断是否规模超过限制 
	if(size>MAX){
		printf("问题规模过大!"); 
	}else if(isLog2(size)) {//判断规模是否为2的k次方 
		initChess(size);
	ChessBoard(0,0,0,(size/2)-1,size);
	printChess(size);
	return 0;
	}else{
		printf("请输入2^k的数(k>0)!\n"); 
	}
	
} 

void printChess(int size){
	printf("棋盘覆盖顺序如下:\n\n");
	for(int i=0;i<size;i++){
		for(int j=0;j<size;j++){
			printf("%d\t",Board[i][j]);
		}
		printf("\n\n");
	}
} 

void initChess(int size){
	Board=(int **)malloc(size*sizeof(int *));
	for(int i=0;i<size;i++){
		Board[i]=(int *)malloc(size*sizeof(int));
	}
	for(int x=0;x<size;x++){
		for(int y=0;y<size;y++){
			Board[x][y]=0;
		}
	}
} 
//用于判断是否为2的k次方 
bool isLog2(int n){
	if(n<0){
		return false;
	} 
	double result=log(n)/log(2);
	if(result-(int)result==0){
		return true;
	}
	return false;
}

//tr:棋盘左上角方格行号
//td:棋盘左上角方格列号
//dr:棋盘特殊方格行号
//dt:棋盘特殊方格列号 
void ChessBoard(int tr,int tc,int dr,int dc,int size){
	if(size==1){
		return;
	} 
	int t=tile++;
	int s=size/2;
	//覆盖棋盘左上角棋盘
	//如果特殊方格在此棋盘中,继续调用方法覆盖此棋盘
	//如果不在此棋盘中,设置右下角方格为特殊方格,调用方法覆盖此棋盘 
	if(dr<tr+s&&dc<tc+s){
		ChessBoard(tr,tc,dr,dc,s);
	} else{
		Board[tr+s-1][tc+s-1]=t;
		ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
	}
	//覆盖棋盘右上角棋盘 
	if(dr<tr+s&&dc>=tc+s){
		ChessBoard(tr,tc+s,dr,dc,s);
	}else{ 
		Board[tr+s-1][tc+s]=t;
		ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
	}
	//覆盖棋盘左下角棋盘 
	if(dr>=tr+s&&dc<tc+s){
		ChessBoard(tr+s,tc,dr,dc,s);
	}else{
		Board[tr+s][tc+s-1]=t;
		ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
	}
	//覆盖棋盘右下角棋盘 
	if(dr>=tr+s&&dc>=tc+s){
		ChessBoard(tr+s,tc+s,dr,dc,s);
	}else{
		Board[tr+s][tc+s]=t;
		ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
	}
	
} 

运行结果:

在这里插入图片描述

时间复杂度分析:

在这里插入图片描述
解递归方程的时间复杂度为:O(n)=O(4k)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值