分治法解决棋盘覆盖问题
问题描述:
在一个2k×2k(k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中出现的位置有4k中情形,因而有4k中不同的棋盘。棋盘覆盖问题要求用下图所示的4中不同形状的L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何两个L型骨牌不得重复覆盖
算法设计:
使用分治策略。在一个2k *2k的棋盘中,当k大于0时,可以将棋盘分割成4个2k-1*2k-1子棋盘。如图所示:
特殊的方格位于4个较小的棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘化为特殊棋盘,可以用一个L型骨牌覆盖这三个较小棋盘汇合处,这三个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的特殊方格,从而将原来的问题简化成了4个更小规模的棋盘覆盖问题。递归的使用这种分割,直至棋盘简化为1*1的棋盘。
代码实现:
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#define MAX 32767
void initChess(int size);
void ChessBoard(int tr,int tc,int dr,int dc,int size);
void printChess(int size);
bool isLog2(int n);
int **Board;//棋盘,用于记录覆盖的顺序
int tile=1;//标记第几次覆盖
int main(){
int size;
printf("请输入棋盘的大小,棋盘大小应为2^k(k>0)\n");
scanf("%d",&size);
//判断是否规模超过限制
if(size>MAX){
printf("问题规模过大!");
}else if(isLog2(size)) {//判断规模是否为2的k次方
initChess(size);
ChessBoard(0,0,0,(size/2)-1,size);
printChess(size);
return 0;
}else{
printf("请输入2^k的数(k>0)!\n");
}
}
void printChess(int size){
printf("棋盘覆盖顺序如下:\n\n");
for(int i=0;i<size;i++){
for(int j=0;j<size;j++){
printf("%d\t",Board[i][j]);
}
printf("\n\n");
}
}
void initChess(int size){
Board=(int **)malloc(size*sizeof(int *));
for(int i=0;i<size;i++){
Board[i]=(int *)malloc(size*sizeof(int));
}
for(int x=0;x<size;x++){
for(int y=0;y<size;y++){
Board[x][y]=0;
}
}
}
//用于判断是否为2的k次方
bool isLog2(int n){
if(n<0){
return false;
}
double result=log(n)/log(2);
if(result-(int)result==0){
return true;
}
return false;
}
//tr:棋盘左上角方格行号
//td:棋盘左上角方格列号
//dr:棋盘特殊方格行号
//dt:棋盘特殊方格列号
void ChessBoard(int tr,int tc,int dr,int dc,int size){
if(size==1){
return;
}
int t=tile++;
int s=size/2;
//覆盖棋盘左上角棋盘
//如果特殊方格在此棋盘中,继续调用方法覆盖此棋盘
//如果不在此棋盘中,设置右下角方格为特殊方格,调用方法覆盖此棋盘
if(dr<tr+s&&dc<tc+s){
ChessBoard(tr,tc,dr,dc,s);
} else{
Board[tr+s-1][tc+s-1]=t;
ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
//覆盖棋盘右上角棋盘
if(dr<tr+s&&dc>=tc+s){
ChessBoard(tr,tc+s,dr,dc,s);
}else{
Board[tr+s-1][tc+s]=t;
ChessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
//覆盖棋盘左下角棋盘
if(dr>=tr+s&&dc<tc+s){
ChessBoard(tr+s,tc,dr,dc,s);
}else{
Board[tr+s][tc+s-1]=t;
ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
//覆盖棋盘右下角棋盘
if(dr>=tr+s&&dc>=tc+s){
ChessBoard(tr+s,tc+s,dr,dc,s);
}else{
Board[tr+s][tc+s]=t;
ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
}
运行结果:
时间复杂度分析:
解递归方程的时间复杂度为:O(n)=O(4k)。