业务术语
1)用户
用户以设备为判断标准,在移动统计中,每个独立设备认为是一个独立用户。Android
系统根据IMEI 号,IOS 系统根据OpenUDID 来标识一个独立用户,每部手机一个用户。
2)新增用户
首次联网使用应用的用户。如果一个用户首次打开某APP,那这个用户定义为新增用
户;卸载再安装的设备,不会被算作一次新增。新增用户包括日新增用户、周新增用户、月
新增用户。
3)活跃用户
打开应用的用户即为活跃用户,不考虑用户的使用情况。每天一台设备打开多次会被计
为一个活跃用户。
4)周(月)活跃用户
某个自然周(月)内启动过应用的用户,该周(月)内的多次启动只记一个活跃用户。
5)月活跃率
月活跃用户与截止到该月累计的用户总和之间的比例。
6)沉默用户
用户仅在安装当天(次日)启动一次,后续时间无再启动行为。该指标可以反映新增用
户质量和用户与APP 的匹配程度。
7)版本分布
不同版本的周内各天新增用户数,活跃用户数和启动次数。利于判断APP 各个版本之
间的优劣和用户行为习惯。
8)本周回流用户
上周未启动过应用,本周启动了应用的用户。
9)连续n 周活跃用户
连续n 周,每周至少启动一次。
10)忠诚用户
连续活跃5 周以上的用户
11)连续活跃用户
连续2 周及以上活跃的用户
12)近期流失用户
连续n(2<= n <= 4)周没有启动应用的用户。(第n+1 周没有启动过)
13)留存用户
某段时间内的新增用户,经过一段时间后,仍然使用应用的被认作是留存用户;这部分
用户占当时新增用户的比例即是留存率。
例如,5 月份新增用户200,这200 人在6 月份启动过应用的有100 人,7 月份启动过
应用的有80 人,8 月份启动过应用的有50 人;则5 月份新增用户一个月后的留存率是50%,
二个月后的留存率是40%,三个月后的留存率是25%。
14)用户新鲜度
每天启动应用的新老用户比例,即新增用户数占活跃用户数的比例。
15)单次使用时长
每次启动使用的时间长度。
16)日使用时长
累计一天内的使用时间长度。
17)启动次数计算标准
IOS 平台应用退到后台就算一次独立的启动;Android 平台我们规定,两次启动之间的
间隔小于30 秒,被计算一次启动。用户在使用过程中,若因收发短信或接电话等退出应用
30 秒又再次返回应用中,那这两次行为应该是延续而非独立的,所以可以被算作一次使用
行为,即一次启动。业内大多使用30 秒这个标准,但用户还是可以自定义此时间间隔。
ods: 原始json数据
dwd:用户启动表数据 get_json_object转换
dwd: dwd_start_log:
CREATE EXTERNAL TABLE dwd_start_log(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`open_ad_type` string,
`action` string,
`loading_time` string,
`detail` string,
`extend1` string
) PARTITIONED BY (
dt string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_start_log/'
TBLPROPERTIES('parquet.compression'='lzo');
dws: 每日设备行为 每日设备行为,主要按照设备id 统计。
create external table dws_uv_detail_daycount
(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_count` bigint COMMENT '活跃次数'
) partitioned by(dt string)
stored as parquet
location '/warehouse/gmall/dws/dws_uv_detail_daycount';
2)数据装载
insert overwrite table dws_uv_detail_daycount partition(dt='2020-03-10')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)