1709 访问日期之间最大的空档期
SQL架构
Create table If Not Exists UserVisits_1709(user_id int, visit_date date);
Truncate table UserVisits_1709;
insert into UserVisits_1709 (user_id, visit_date) values ('1', '2020-11-28');
insert into UserVisits_1709 (user_id, visit_date) values ('1', '2020-10-20');
insert into UserVisits_1709 (user_id, visit_date) values ('1', '2020-12-3');
insert into UserVisits_1709 (user_id, visit_date) values ('2', '2020-10-5');
insert into UserVisits_1709 (user_id, visit_date) values ('2', '2020-12-9');
insert into UserVisits_1709 (user_id, visit_date) values ('3', '2020-11-11');
表: UserVisits
+-------------+------+
| Column Name | Type |
+-------------+------+
| user_id | int |
| visit_date | date |
+-------------+------+
该表没有主键。
该表包含用户访问某特定零售商的日期日志。
假设今天的日期是 '2021-1-1' 。
编写 SQL 语句,对于每个 user_id ,求出每次访问及其下一个访问(若该次访问是最后一次,则为今天)之间最大的空档期天数 window 。
返回结果表,按用户编号 user_id 排序。
查询格式如下示例所示:
UserVisits 表:
+---------+------------+
| user_id | visit_date |
+---------+------------+
| 1 | 2020-11-28 |
| 1 | 2020-10-20 |
| 1 | 2020-12-3 |
| 2 | 2020-10-5 |
| 2 | 2020-12-9 |
| 3 | 2020-11-11 |
+---------+------------+
结果表:
+---------+---------------+
| user_id | biggest_window|
+---------+---------------+
| 1 | 39 |
| 2 | 65 |
| 3 | 51 |
+---------+---------------+
对于第一个用户,问题中的空档期在以下日期之间:
- 2020-10-20 至 2020-11-28 ,共计 39 天。
- 2020-11-28 至 2020-12-3 ,共计 5 天。
- 2020-12-3 至 2021-1-1 ,共计 29 天。
由此得出,最大的空档期为 39 天。
对于第二个用户,问题中的空档期在以下日期之间:
- 2020-10-5 至 2020-12-9 ,共计 65 天。
- 2020-12-9 至 2021-1-1 ,共计 23 天。
由此得出,最大的空档期为 65 天。
对于第三个用户,问题中的唯一空档期在 2020-11-11 至 2021-1-1 之间,共计 51 天。
解题
select user_id,max(diff) as biggest_window
from(
select user_id,datediff(
lead(visit_date,1,'2021-01-01') over(partition by user_id order by visit_date),visit_date
) as diff
from UserVisits_1709
) tmp
group by user_id;