论文笔记-arXiv2025-A survey about Cold Start Recommendation

面向大语言模型(LLMs)时代的冷启动推荐:全面调研与路线图

论文下载: Cold-Start Recommendation towards the Era of Large Language Models (LLMs): A Comprehensive Survey and Roadmap

1.引言

本文旨在对冷启动推荐中最先进的技术和框架进行广泛的回顾,并对知识范围不断扩大的大模型时代进行特殊展望,如图1所示。根据收集的数据,考虑到外部知识源的规模,本文将现有工作分为四类:内容特征、图关系、领域信息和来自大语言模型的世界知识。
在这里插入图片描述

2.前言

冷启动推荐的主要挑战在于新用户和新商品几乎没有或没有可用的信息。在这种情况下,系统很难基于非常稀疏的信息建模用户与商品之间的相似性。因此,冷启动推荐成为推荐系统中长期存在的问题。

本文明确定义了九个具体的冷启动推荐任务。这些任务根据RecSys观察用户或项目的条件而有所不同,分为四个主要类别:长尾、正常冷启动、严格冷启动和系统冷启动,以突出其独特性特征。图4说明了这些类别和相应的子任务,并阐明了训练、调整和测试集在不同场景中的差异。
在这里插入图片描述

3.内容特征

根据内容特征的利用,可以将该方法分为两种类型:数据不完整学习,用于解决严格冷启动场景,即没有先前交互的情况;以及数据高效学习,旨在优化普通冷启动场景中的性能,即可用的交互数据有限。

3.1数据不完整学习

基于不同的学习方式可以分为四类:鲁棒协同训练、知识对齐、冷启动探索和特征相似性度量。

3.1.1鲁棒协同训练

在冷启动推荐中,鲁棒协同训练采用鲁棒策略来联合利用基于行为的热用户/物品表示和基于内容的冷用户/物品表示进行协同训练。可以分为两类:鲁棒泛化和自动编码器。

鲁棒泛化:通过强大的泛化策略同时优化基于行为的表示和基于内容的表示。代表性方法包括:DropoutNet、Heater、MTPR、Cold-Transformer和TDRO。

自动编码器:采用编码-解码架构,编码器通过变分或去噪策略获取信息,解码器负责信息重构,两者共同训练以表示冷启动和热启动的实例。代表性方法包括:LLAE、MAIL、CVAR、GoRec和CFLS。

3.1.2知识对齐

由于从行为数据中获得的暖表示与从内容数据中获得的冷表示之间存在语义差异,因此战略对齐是必不可少的。现有的知识对齐可以分为三类:对比学习、知识蒸馏和生成对抗网络。

对比学习:用于将冷实例的基于内容的表示与热实例的基于行为的表示联系起来。代表性方法包括:CLCRec和CCFCRec。

知识蒸馏:将知识从基于行为的热表示提炼为基于内容的冷表示,目标是确保两者的表示传达更一致的信息。代表性方法包括:ALDI、DTKD和Cold & Warm Net。

生成对抗网络:用于使从内容映射器生成的冷表示更类似于输入推荐系统的暖表示。代表性方法包括:GAR、GF2、GAZRec。

3.1.3冷启动探索

基于冷探索的方法允许探索冷用户或项目之间的兴趣,利用推荐系统的反馈信号来快速调整冷实体的表示和建模。

强化学习:强化学习算法通常用于冷实例的兴趣探索,以快速进行冷启动表示。代表性方法包括:MetaCRS、WSCB、RL-LTV和ColdNAS。

3.1.4特征相似性度量

从内容特征相似度的角度来学习和评估用户/项目兴趣。通过这种方式,模型可以避免热表示(来自行为数据)和冷表示(来自内容数据)之间的信息差异。

多特征融合:同时利用多个特征来提供更多信息,以便由于数据不完整问题而更好地进行冷实例测量。代表性方法包括:CIRec、SMINet和AutoFuse。

哈希:哈希用于将热用户/项目和冷用户/项目的表示映射到统一的二进制哈希码空间,以进行相似性测量。代表性方法包括:NeuHash-CF和MFDCF。

3.2数据高效学习

基于梯度的元学习,通过在训练期间模拟少样本测试场景并利用二阶梯度,实现了在最小数据下的快速适应。许多研究将元学习应用于冷启动问题,并将其分为四种方法:元学习优化、元任务利用、元嵌入初始化和序列元学习。

3.2.1元学习优化

元学习的本质在于通过多样化用户的历史交互进行模型预训练,然后利用有限的额外交互数据快速适应新的冷启动用户或项目。因此,优化预训练和适应阶段对于提高冷启动推荐性能至关重要。

预训练&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值