问题描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析:
如果n=1,只有一种跳法,那就是1
如果n=2,那么有两种跳法,2,[1,1]
如果n=3,那么有三种跳法,[1,1,1],[1,2],[2,1]
如果n=4,那么有五种跳法,[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]
如果n=5,那么有八种跳法,[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1],[2,2,1],[2,1,2],[1,2,2]
结果为1,2,3,5,8 这就是斐波那切数列。
算法实现:
import java.util.Scanner;
public class Main {
static long aLong(int n){
int[] result={1,2,3};
if(n<3){
return result[n-1];
}
long fone=2;
long ftwo=3;
long fn=0;
for(int i=3;i<n;i++){
fn=fone+ftwo;
fone=ftwo;
ftwo=fn;
}
return fn;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
System.out.println("请输入台阶数n:");
int n=sc.nextInt();
long fn= aLong(n);
System.out.println(fn);
}
}
测试:
测试用例:台阶数n=8
:
结果:34
小结:
这道题其实就是斐波那契数列的另一种出题模式,解法和斐波那契数列大同小异。