#数据结构与算法学习笔记#剑指Offer8:普通青蛙跳台阶+变态青蛙跳台阶+最清晰数学归纳法证明(Java、C/C++)

这篇博客介绍了青蛙跳台阶问题,包括普通模式和变态模式。普通模式是斐波那契数列的应用,通过数学归纳法证明了其公式。变态模式则直接通过观察得出公式,实现代码简洁高效。博客提供了Java和C++的编程实现。
摘要由CSDN通过智能技术生成

2018.8.3     《剑指Offer》从零单刷个人笔记整理(66题全)目录传送门

普通青蛙跳台阶问题实际上是一道斐波那契数列的题目,可以直接参考上一篇对斐波那契数列的算法分析和实现的文章——#数据结构与算法学习笔记#剑指Offer7:斐波那契数列的四种编程实现方法 + 测试用例(Java、C/C++)

变态青蛙跳台阶问题就厉害了,思想其实本质还是斐波那契数列的思想,但是却不需要编程循环或者递归模拟斐波那契的加和过程,只需要用顺推的思想+数学归纳法归纳就可以确定公式  f\left ( n \right ) = 2^{n - 1}  。


普通跳青蛙题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

变态跳青蛙题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。


普通跳青蛙原理:

斐波那契数列:f\left ( n \right ) = f\left ( n - 1 \right ) + f\left ( n - 2 \right ),其中,f\left ( 1 \right ) = 1f\left ( 2 \right ) = 2

思路:由后往前倒推,当青蛙站在第n级台阶时回顾上一步,他到达第n级台阶可以有两种方式:1.从下一级台阶第n-1级往上跳1步,2.从下两级台阶第n-2级往上跳2步。那青蛙到第n级台阶的方法数

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值