YOLO目标检测算法改进
文章平均质量分 90
本专栏提供 YOLOX、YOLOv5、YOLOv7、YOLOv8 目标检测算法的各种有效改进机制,欢迎大家订阅我的专栏一起学习YOLO。专栏内容持续更新中!
Mais10011
计算机硕士在读
展开
-
YOLOX 改进 007:SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络
SPD-Conv(Space-to-Depth Convolution)是一种新的 CNN 模块,旨在提高低分辨率图像和小物体目标检测的性能。它通过将特征图的空间维度转换为深度维度来增强特征表示,从而弥补低分辨率图像信息不足的问题。在本文中,给大家带来的教程是 YOLOX 之 使用 SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络。原创 2024-08-09 03:38:01 · 494 阅读 · 0 评论 -
YOLOv8 改进 006:SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络
SPD-Conv(Space-to-Depth Convolution)是一种新的 CNN 模块,旨在提高低分辨率图像和小物体目标检测的性能。它通过将特征图的空间维度转换为深度维度来增强特征表示,从而弥补低分辨率图像信息不足的问题。在本文中,给大家带来的教程是 YOLOv8 之 使用 SPD-Conv 空间深度转换卷积替换 CNN 传统卷积神经网络。原创 2024-08-09 02:40:43 · 2762 阅读 · 0 评论 -
YOLOv5 改进 005:Backbone 添加 SimAM 注意力机制
本文介绍了一种简单而有效的注意力模块,即简单注意力模块(SimAM)。SimAM 是一种无参数注意力模块,它能够在增强神经网络的表示能力的同时,而不会显著增加计算开销。在本文中,给大家带来的教程是在原来的主干网络最后添加 SimAM 注意力机制。原创 2024-08-07 13:55:04 · 971 阅读 · 0 评论 -
YOLOX 改进 004:Backbone 添加 SimAM 注意力机制
本文介绍了一种简单而有效的注意力模块,即简单注意力模块(SimAM)。SimAM 是一种无参数注意力模块,它能够在增强神经网络的表示能力的同时,而不会显著增加计算开销。在本文中,给大家带来的教程是在原来的主干网络添加 SimAM 注意力机制。原创 2024-08-07 03:44:28 · 1069 阅读 · 0 评论 -
YOLOv8改进003:Neck 添加双向特征金字塔网络 BiFPN + 添加小目标检测头(小目标检测大量涨点)
YOLOv8 目标检测算法改进之 Neck 添加双向特征金字塔网络 BiFPN 并结合《YOLOv8改进002:添加小目标检测头(小目标检测大量涨点)》一起改进,实现小目标检测大幅度涨点。原创 2024-08-06 16:32:49 · 2278 阅读 · 9 评论 -
YOLOv8改进002:添加小目标检测头(小目标检测大量涨点)
YOLOv8 目标检测算法改进之添加小目标检测头,亲测在小目标检测的数据集上有大幅度的涨点效果(mAP直接涨了 0.04 左右)。原创 2024-08-05 01:12:35 · 3573 阅读 · 8 评论 -
YOLOv8改进001:Backbone 的下采样替换为 RepVGGBlock 模块
YOLOv8 目标检测算法改进之主干网络下采样替换为 RepVGGBlock 模块。原创 2024-08-04 21:00:23 · 1360 阅读 · 1 评论