1. 基础知识
小目标检测是计算机视觉领域中的一个研究方向,旨在从图像或视频中准确地检测和定位尺寸较小的目标物体。在标准的目标检测算法中,当数据集中有小目标时,小目标会出现漏检或检测效果不佳等问题。YOLOv8 目标检测算法默认有三个检测头,能够多尺度地对目标进行检测,其检测尺寸分别为:
若输入图像尺寸为 640×640,
-
P3/8-small 对应的检测特征图大小为 80×80,用于检测大小在 8×8 以上的小目标。
-
P4/16-medium 对应的检测特征图大小为 40×40,用于检测大小在 16×16 以上的中等目标。
-
P5/32-large 对应的检测特征图大小为 20×20,用于检测大小在 32×32 以上的大目标。
但对微小目标的检测可能存在检测能力不佳的现象。因此添加一个微小物体检测头,在小目标数据集中能够实现有效涨点。
-
新增 160×160 的检测特征图,用于检测大小在 4×4 以上的微小目标。
-
原生的 YOLOv8 目标检测模型输出层是 P3、P4、P5 三个输出层,为了提升对小目标的检测能力,添加第四个输出层 P2。
-
对于改进后的网络结构,Backbone 部分的结构没有改变,只有 Neck 和 Header 两部分的结构有所调整。
2. 项目环境
- 解释器:3.9.19
- 框架:Pytorch 2.0.0 + CUDA 11.8
- 系统:Win10 / Ubuntu 20.04
3. 模型改进
(1)原生的 YOLOv8 网络结构:
未经改进的网络结构图如下:
对应的 yolov8.yaml 文件如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 10 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x su