YOLOv8改进002:添加小目标检测头(小目标检测大量涨点)

1. 基础知识

小目标检测是计算机视觉领域中的一个研究方向,旨在从图像或视频中准确地检测和定位尺寸较小的目标物体。在标准的目标检测算法中,当数据集中有小目标时,小目标会出现漏检或检测效果不佳等问题。YOLOv8 目标检测算法默认有三个检测头,能够多尺度地对目标进行检测,其检测尺寸分别为:

若输入图像尺寸为 640×640,

  • P3/8-small 对应的检测特征图大小为 80×80,用于检测大小在 8×8 以上的小目标。

  • P4/16-medium 对应的检测特征图大小为 40×40,用于检测大小在 16×16 以上的中等目标。

  • P5/32-large 对应的检测特征图大小为 20×20,用于检测大小在 32×32 以上的大目标。

但对微小目标的检测可能存在检测能力不佳的现象。因此添加一个微小物体检测头,在小目标数据集中能够实现有效涨点。

  • 新增 160×160 的检测特征图,用于检测大小在 4×4 以上的微小目标。

  • 原生的 YOLOv8 目标检测模型输出层是 P3、P4、P5 三个输出层,为了提升对小目标的检测能力,添加第四个输出层 P2。

  • 对于改进后的网络结构,Backbone 部分的结构没有改变,只有 Neck 和 Header 两部分的结构有所调整。

2. 项目环境

  • 解释器:3.9.19
  • 框架:Pytorch 2.0.0 + CUDA 11.8
  • 系统:Win10 / Ubuntu 20.04

3. 模型改进

(1)原生的 YOLOv8 网络结构:

未经改进的网络结构图如下:

对应的  yolov8.yaml  文件如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 10  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512] # YOLOv8x su
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值