学习笔记10 微分方程的matlab符号求解方法

本文介绍了如何使用MATLAB进行微分方程的符号求解,通过实例解析了单个微分方程及常微分方程组的解法,包括设置初值条件,并强调了在新版MATLAB2018b中使用`simplify()`进行化简的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开始学微分方程,用汤家凤的基础课配他的辅导讲义。然后再来看代码。我要国二!!!!
代码全打一遍是防止思维跳跃,切忌形式主义
尽量做到,学一次,用一年。
求符号解

  1. 定义符号变量
  2. 调用dsolve函数
[y1,...,yN]=dsolve(eqns,conds,Name,Value)

eqns为符号微分方程或符号微分方程组;conds为初值条件或边界条件;Name和Value为可选的成对参数。

x 2 + y + ( x − 2 y ) y ′ = 0 x^2+y+\left( x-2y \right) y'=0 x2+y+(x2y)y=0

clc,clear
syms y(x)%定义符号变量
dsolve(x^2+y+(x-2*y)*diff(y)==0)

结果

ans =
 x/2 + ((4*x^3)/3 + x^2 + C1)^(1/2)/2
 x/2 - ((4*x^3)/3 + x^2 + C1)^(1/2)/2

这里的dsolve只有一个参数
下面升级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值